THE NUMBER OF MAXIMAL INDEPENDENT SETS OF SEQUENTIALLY COHEN-MACAULAY BIPARTITE GRAPHS

Dao Thi Thanh Ha
Vinh University
Received on $05 / 5 / 2021$, accepted for publication on 19/7/2021

Abstract

We determine the maximum number of maximal independent sets of sequentially bipartite graphs and we give a completed characterization of the extremal graphs.

Keywords: Graph; independent set; sequentially Cohen-Macaulay.

1 Introduction and results

Let $\mathrm{m}(G)$ be the number of maximal independent sets of a simple graph G. Around 1960, Erdös and Moser raised the problem of determining the largest number of $\mathrm{m}(G)$ in terms of its order, say n in this paper, and determining the extremal graphs. In 1965, Moon and Moser [11] solved this problem for any simple graph.

This problem now has been focused on various classes of graphs (see e.g. [3, 9. 10, 15]). For the simplest case, Wilf [15] was the first to to prove that if T is tree with n vertices, then

$$
\mathrm{m}(T) \leqslant \begin{cases}2^{s-1}+1 & \text { if } n=2 s \\ 2^{s} & \text { if } n=2 s+1\end{cases}
$$

and he also characterize those trees achieving the maximum value.
The goal of this paper is to extend this result to sequentially Cohen-Macaulay bipartite graphs. Let G be a simple (no loops or multiple edges) undirected graph on the vertex set $V(G)=\{1, \ldots, n\}$. Let K be a field and $R=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over K. Then, we can associate to G a quadratic square-free monomial ideal

$$
I(G)=\left(x_{i} x_{j} \mid\{i, j\} \in E(G)\right) \subset R,
$$

where $E(G)$ is the edge set of G. The ideal $I(G)$ is called the edge ideal of G. Using the Stanley-Reisner correspondence, we can associate to G the simplicial complex $\Delta(G)$ where $I_{\Delta(G)}=I(G)$.

Notice that the faces of $\Delta(G)$ are the independent sets or stable sets of G, i.e. S is a face of $\Delta(G)$ if and only if there is no edge of G joining any two vertices of S. Thus, $\mathrm{m}(G)$ is just the number of maximal sets of $\Delta(G)$ (with respect to inclusion).

Note that the property of being sequentially Cohen-Macaulay, a condition weaker than being Cohen-Macaulay, was introduced by Stanley [13] in connection with the theory of nonpure shellability. A graded R-module M is called sequentially Cohen-Macaulay (over k) if there exists a finite filtration of graded R-modules

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{r}=M
$$

[^0]D. T. T. Ha / The number of maximal independent sets of sequentially Cohen-Macaulay...
such that each M_{i} / M_{i-1} is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:
$$
\operatorname{dim}\left(M_{1} / M_{0}\right)<\operatorname{dim}\left(M_{2} / M_{1}\right)<\cdots<\operatorname{dim}\left(M_{r} / M_{r-1}\right) .
$$

We say that a graph G sequentially Cohen-Macaulay if $R / I(G)$ is sequentially CohenMacaulay. The class of sequentially Cohen- Macaulay graphs have been interested by many authors (see $[4,5,6,14]$).

The main result of this paper is to extend the result of Wilf to the sequentially CohenMacaulay bipartite graphs. Recall that a graph G is bipartite if the vertex set $V(G)$ can be partitioned into two disjoint sets $V(G)=V_{1} \cup V_{2}$ such that every edge of G contains one vertex in V_{1} and the other in V_{2}. The couple (V_{1}, V_{2}) is called a bipartition of G.

Example 1.1. All trees are sequentially Cohen- Macaulay (see [14, Theorems 2.13 and 3.10].

For integers $i \geqslant 1$ and $j \geqslant 0$, we define the baton $B(i, j)$ to be the graph obtained from a basic path P of i vertices by attaching j paths of length two to the endpoints of P (see Figure 1 below).

Fig. 1: Batons.

Then, the main result of the paper is the following theorem.
Theorem 3.2. Let G a connected sequentially Cohen-Macaulay bipartite graph with n vertices. Then,

$$
\mathrm{m}(G) \leqslant f(n)= \begin{cases}2^{s} & \text { if } n=2 s+1, \\ 2^{s-1}+1 & \text { if } n=2 s .\end{cases}
$$

Furthermore, $\mathrm{m}(G)=f(n)$ if and only if

$$
G \cong \begin{cases}B(1, s) & \text { if } n=2 s+1 \\ B(2, s-1) \text { or } B(4, s-2) & \text { if } n=2 s\end{cases}
$$

2 Preliminaries

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. An edge $e \in E(G)$ connecting two vertices x and y will be also written as $x y$ (or $y x$). In this case, it is said that x and y are adjacent. A set of vertices of G is independent if every pair of its vertices is not adjacent.

A path P of G is a sequence of vertices

$$
P: v_{0}, v_{1}, \ldots, v_{k}
$$

such that $v_{i-1} v_{i}$ is an edge of G for $i=1, \ldots, k$. Then, we say that P connects two vertices u and v; and k is the length of P.

A cycle in the graph G is a non-empty path in which the only repeated vertices are the first and last vertices. The length of a cycle is the number of edges involved

A connected graph without cycles is called a tree.
A graph G is connected whenever there is a path between every pair of vertices. A graph is called totally disconnected if it is either a null graph or it contains no edge. If G is totally disconnected graph, then $\mathrm{m}(G)=1$.

Let v be a vertex of G. The neighborhood of v in G is the set

$$
N_{G}(v)=\{u \in V(G) \mid u v \in E(G)\}
$$

The number $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$ is called the degree of x in G. If $\operatorname{deg}_{G}(v)=0$, then v is called an isolated vertex of G; and if $\operatorname{deg}_{G}(v)=1$, then v is called a leaf of G.

For a subset S of $V(G)$, the subgraph of G obtained from G by removing all vertices in S and their incident edges, denoted by $G \backslash S$. The graph $G \backslash(V(G) \backslash S)$ is called the induced subgraph of G on the vertex S, and denoted by $G[S]$.

For a vertex v of G, we denote $G \backslash v=G \backslash\{v\}$ and $G_{v}=G \backslash\left(\{v\} \cup N_{G}(v)\right)$.
Lemma 2.1. [15] If \mathcal{H} is an induced subgraph of G, then

$$
\mathrm{m}(\mathcal{H}) \leq \mathrm{m}(G)
$$

Lemma 2.2. [9, Lemma 1] Let G be a graph. Then

1. $\mathrm{m}(G) \leq \mathrm{m}\left(G_{v}\right)+\mathrm{m}(G \backslash v)$, for any vertex v of G.
2. If v is a leaf adjacent to u, then $\mathrm{m}(G)=\mathrm{m}\left(G_{v}\right)+\mathrm{m}\left(G_{u}\right)$.

Lemma 2.3. [14, Lemma 2.8] If G is a sequentially Cohen-Macaulay bipartite graph, then there is $v \in V(G)$ with $\operatorname{deg}_{G}(v)=1$.
D. T. T. Ha / The number of maximal independent sets of sequentially Cohen-Macaulay...

A matching in G is a set M of edges so that no two of which meet a common vertex. The matching number $\nu(G)$ of G is the maximum size of matchings of G. If every vertex of G is incident to an edge of M, then M is called a perfect matching. Note that $|V(G)| \geqslant 2 \nu(G)$ and the equality occurs if and only if G has a perfect matching.

An induced matching M in a graph G is a matching where no two edges of M are joined by an edge of G. The induced matching number $\nu_{0}(G)$ of G is the maximum size of induced matchings of G. We always have $\nu_{0}(G) \leq \nu(G)$; and if $\nu_{0}(G)=\nu(G)$ then G is called a Cameron-Walker graph after Hibi et al. [7].

Cameron and Walker [2] gave a classification of the simple graphs G with $\nu(G)=\nu_{0}(G)$; such graphs now are the so-called Cameron-Walker graphs (see [7]).

Lemma 2.4. ([2, Theorem 1] or [7, p. 258] A graph G is Cameron-Walker if and only if it is one of the following graphs:

1. a star;
2. a star triangle;
3. a finite graph consisting of a connected bipartite graph with bipartition (A, B) such that there is at least one leaf edge attached to each vertex $i \in A$ and that there may be possibly some pendant triangles attached to each vertex $j \in B$.

Example 2.5. Let G be Cameron-Walker graph with 8 vertices in Figure 1. Then $\nu(G)=$ $\nu_{0}(G) 2$ and the maximal independent sets of G are

$$
\{1,2,5,6,7,8\} ;\{3,4\} ;\{3,5,6\} ;\{4,7,8\}
$$

Hence, $\mathrm{m}(G)=4$.

Fig. 2: Cameron-Walker bipartite graph.
Lemma 2.6. Let G be a bipartite graph. Then $\mathrm{m}(G) \leq 2^{\nu(G)}$. Furthermore, the equality occurs if and only if G is a Cameron-Walker bipartite graph.

Proof. Follows from [8, Corollary 3.4].

3 The proof of the main result

We begin with the following lemma.

Lemma 3.1. Let r, s_{1}, \ldots, s_{r} be positive integers. Then

$$
\prod_{i=1}^{r}\left(2^{s_{i}-1}+1\right)+\prod_{i=1}^{r} 2^{s_{i}-1} \leq 2^{\sum_{i=1}^{r} s_{i}}+1
$$

and the equality only when $s_{1}=\cdots=s_{r}=1$ or $r=1$.
Proof. We prove by the induction on r. If $r=1$, then it is obvious.
If $r>1$, then we assume that $s \leq s_{i}$ for all $i=1, \cdots, r$. We will show that

$$
\left(2^{s-1}+1\right) \prod_{i=1}^{r}\left(2^{s_{i}-1}+1\right)+2^{s-1} \prod_{i=1}^{r} 2^{s_{i}-1} \leq 2^{s+\sum_{i=1}^{r} s_{i}}+1
$$

We have

$$
\begin{aligned}
& \left(2^{s-1}+1\right) \prod_{i=1}^{r}\left(2^{s_{i}-1}+1\right)+2^{s-1} \prod_{i=1}^{r} 2^{s_{i}-1} \\
= & \left(2^{s-1}+1\right)\left[\prod_{i=1}^{r}\left(2^{s_{i}-1}+1\right)+\prod_{i=1}^{r} 2^{s_{i}-1}\right]-\prod_{i=1}^{r} 2^{s_{i}-1} \\
\leq & \left(2^{s-1}+1\right)\left(2^{\sum_{i=1}^{r} s_{i}}+1\right)-\prod_{i=1}^{r} 2^{s_{i}-1} \\
\leq & {\left[2^{s+\sum_{i=1}^{r} s_{i}}+1\right]+2^{\sum_{i=1}^{r} s_{i}}\left(1-2^{s-1}\right)+\left(2^{s-1}-2^{\sum_{i=1}^{r} s_{i}-r}\right) . }
\end{aligned}
$$

Since $1 \leq s \leq s_{i}$ for all i and $(s-1) \leq r(s-1) \leq \sum_{i=1}^{r} s_{i}-r$, we have $1-2^{s-1} \leq 0$ and $2^{s-1} \leq 2^{\sum_{i=1}^{r} s_{i}-r}$. Thus, inequality is proved.

Now the equality holds only when $r=1$ or $s_{1}=\cdots=s_{r}=1$. This completes the proof of the lemma.

The main result of this paper is to establish the maximum value of $\mathrm{m}(G)$ for a connected sequentially Cohen-Macaulay bipartite graph G.

Theorem 3.2. Let G a connected sequentially Cohen-Macaulay bipartite graph with n vertices. Then,

$$
\mathrm{m}(G) \leqslant f(n)= \begin{cases}2^{s} & \text { if } n=2 s+1 \\ 2^{s-1}+1 & \text { if } n=2 s\end{cases}
$$

Furthermore, $\mathrm{m}(G)=f(n)$ if and only if

$$
G \cong \begin{cases}B(1, s) & \text { if } n=2 s+1 \\ B(2, s-1) \text { or } B(4, s-2) & \text { if } n=2 s\end{cases}
$$

Proof. We first consider the case n is odd, i.e. $n=2 s+1$ for some $s \geqslant 0$. Note that $\nu(G) \leqslant s$, so that $\mathrm{m}(G) \leqslant 2^{s}$ by Lemma 2.6. Furthermore, the inequality occurs if and
D. T. T. Ha / The number of maximal independent sets of sequentially Cohen-Macaulay...
only if $\nu(G)=\nu_{0}(G)=s$. It follows that G has an induced matching with s edges, say $M=\left\{a_{1} b_{1}, \ldots, a_{s} b_{s}\right\}$.

Since $|V(G)|=2 s+1$, there is another vertex v which is not incident to any edge in M. Note that G is connected, we may assume that v is adjacent to a_{i} for all i. Since G is bipartite, v is not adjacent to b_{i} for all i. This means that $G=B(1, s)$, and the theorem is proved for this case.

Assume that n is even, i.e. $n=2 s$ for some $s \geqslant 1$. Note that $\nu(G) \leqslant s$. If $\nu(G)<s$, then $\mathrm{m}(G) \leqslant 2^{\nu(G)} \leqslant 2^{s-1}$, and the theorem holds for this case.

Therefore we may assume that $\nu(G)=s$, i.e. G has a perfect matching. We prove the theorem by the induction on $\nu(G)$. If $\nu(G)=1$, then G is is a graph with one edge, and then the assertion is trivial.

Assume that $\nu(G)>1$. By Lemma 2.3, there is a vertex $x \in V(G)$ such that $\operatorname{deg}_{G}(x)=$ 1. Set $x y \in E(G)$ (see Figure 3). Then, G_{x} has a perfect matching and $\nu\left(G_{x}\right)=\nu(G)-1$.

Fig. 3: x is a leaf of G
Let G_{1}, \ldots, G_{r} be connected components of G_{x}. Then, they are sequentially CohenMacaulay by [14, Theorem 3.3]. Observe that each G_{i} has a perfect matching, bipartite and $s_{i}:=\nu\left(G_{i}\right) \leq \nu\left(G_{x}\right)=\nu(G)-1$. Then $\sum_{i=1}^{r} s_{i}=\nu\left(G_{x}\right)=\nu(G)-1$. By the induction hypothesis, $\mathrm{m}\left(G_{i}\right) \leq 2^{\nu\left(G_{i}\right)-1}+1$ for all i. We have

$$
\begin{equation*}
\mathrm{m}\left(G_{x}\right)=\prod_{i=1}^{r} \mathrm{~m}\left(G_{i}\right) \leq \prod_{i=1}^{r}\left(2^{s_{i}-1}+1\right) . \tag{3.1}
\end{equation*}
$$

Let $G_{i}^{\prime}:=G_{i} \backslash N_{G}(y)$. Since G is connected, $N_{G_{i}}(y) \neq \emptyset$. Hence, $\nu\left(G_{i}^{\prime}\right) \leq \nu\left(G_{i}\right)-1=s_{i}-1$ because G_{i} has a perfect matching. Together with Lemma 2.6, it yields

$$
\begin{equation*}
\mathrm{m}\left(G_{y}\right) \leq \prod_{i=1}^{r} \mathrm{~m}\left(G_{i}^{\prime}\right) \leq \prod_{i=1}^{r} 2^{\nu\left(G_{i}^{\prime}\right)} \leq \prod_{i=1}^{r} 2^{s_{i}-1} \tag{3.2}
\end{equation*}
$$

By Lemma 2.2(2) and inequations (3.1) and (3.2), we have

$$
\mathrm{m}(G)=\mathrm{m}\left(G_{x}\right)+\mathrm{m}\left(G_{y}\right) \leq \prod_{i=1}^{r}\left(2^{s_{i}-1}+1\right)+\prod_{i=1}^{r} 2^{s_{i}-1}
$$

By Lemma 3.1, $\mathrm{m}(G) \leq 2^{\sum_{i=1}^{r} s_{i}}+1=2^{\nu(G)-1}+1$.
Now, we prove the last assertion. If the equality holds, $r=1$ or $\nu\left(G_{1}^{\prime}\right)=\ldots=\nu\left(G_{r}^{\prime}\right)=$ $s_{1}=\ldots=s_{r}=1$. We next divide the rest of the proof into two cases:

Case 1: $\nu\left(G_{1}^{\prime}\right)=\ldots=\nu\left(G_{r}^{\prime}\right)=s_{1}=\ldots=s_{r}=1$.
Since $s_{i}=1$, so G_{i} is one edge $x_{i} y_{i}$ for all i. If $y x_{i}, y y_{i} \in E(G)$ for some i, then $G_{i}^{\prime}=\emptyset$, a contradiction to $\nu\left(G_{i}^{\prime}\right)=1$. Since G is connected, we may assume that $y x_{i} \in E(G)$ and $y y_{i} \notin E(G)$ for all i. Therefore, $G \cong B(2, s-1)$ (see Figure 4).

Fig. 4: G Baton $B(2, s-1)$
Case 2: $r=1$.
Note that $G_{1}^{\prime}=G_{y}$. We have $\mathrm{m}\left(G_{y}\right)=\mathrm{m}\left(G_{1}^{\prime}\right)=2^{\nu\left(G_{1}^{\prime}\right)}$ and $\nu\left(G_{y}\right)=\nu\left(G_{1}^{\prime}\right)=s_{1}-$ 1. Thus, $\mathrm{m}\left(G_{y}\right)=2^{\nu\left(G_{y}\right)}$. By Lemma 2.6, G_{y} is a Cameron-Walker bipartite graph. Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{t}$ be connected components of G_{y}. Then \mathcal{H}_{i} is Cameron-Walker bipartite graphs for all i with partition ($K_{i} ; T_{i}$) such that there is at least one leaf edge attached to vertex in T_{i}. Let \mathcal{H}_{i} is a star $\left(\left\{a_{i}\right\} ;\left\{b_{i, 1}, \ldots, b_{i, v_{i}}\right\}\right)$ where $v_{i} \geq 1$ and $1 \leq i \leq s_{1}-1$. Let $K:=\cup_{i=1}^{t} K_{i}$ and $T:=\cup_{i=1}^{t} T_{i}$. Since G_{y} is a Cameron-Walker graph, $|T|=\nu\left(G_{y}\right)=s_{1}-1$.

Since G_{1} has a perfect matching, $\left|V\left(G_{1}\right)\right|=2 s_{1}$. Then $n=2 s_{1}+2$. Let $N_{G}[y]=$ $\left\{x, y, y_{1}, \ldots, y_{u}\right\}$. We have

$$
\begin{aligned}
\left|V\left(G_{y}\right)\right| \geq|K|+2|T| & \Leftrightarrow n-\left|N_{G}[y]\right| \geq|K|+2\left(s_{1}-1\right) \\
& \Leftrightarrow\left(2 s_{1}+2\right)-(2+u) \geq|K|+2\left(s_{1}-1\right) \\
& \Leftrightarrow|K|+u \leq 2 .
\end{aligned}
$$

Subcase 2.1. $|K|=0$ and $u=2$.
Indeed, we have

$$
2 s_{1}=\left|V\left(G_{1}\right)\right|=2+\left(s_{1}-1\right)+\sum_{i=1}^{s_{1}-1} v_{i} \geq 2+\left(s_{1}-1\right)+\left(s_{1}-1\right)
$$

Hence, $v_{1}=\ldots=v_{s_{1}-1}=1$. Since G is a bipartite connected graph, we may assume that $y_{1} a_{1} \in E(G)$ and $y_{1} b_{1,1} \notin E(G)$. Since $N_{G}\left(b_{1,1}\right)=\left\{a_{1}\right\}$ and $\left\{b_{1,1}, y_{1}\right\} \subseteq N_{G}\left(a_{1}\right)$, we have $\mathrm{m}(G)=\mathrm{m}\left(G_{a_{1}}\right)+\mathrm{m}\left(G_{b_{1,1}}\right)=2^{s_{1}-1}+\mathrm{m}\left(G_{b_{1,1}}\right) \leq 2^{s_{1}-1}+2^{s_{1}-1}=2^{s_{1}}$, a contradiction.

Subcase 2.2. $|K|=0$ and $u=1$.
Indeed, if $v_{1}=\ldots=v_{s_{1}-1}=1$, then $\mathrm{m}(G)=\mathrm{m}\left(G_{x}\right)+\mathrm{m}\left(G_{y}\right)=2^{s_{1}-1}+2^{s_{1}-1}=2^{s_{1}}$, a contraction. Therefore, without loss of generality, we may assume $v_{1} \geq 2$. We have

$$
2 s_{1}=\left|V\left(G_{1}\right)\right|=1+\left(s_{1}-1\right)+\sum_{i=1}^{t} v_{i} \geq 1+\left(s_{1}-1\right)+s_{1} .
$$

Hence, $v_{1}=2$ and $v_{2}=\ldots=v_{s_{1}-1}=1$. Since G is a bipartite connected graph, we may assume $y_{1} a_{i} \in E(G)$ and $y_{1} b_{i} \notin E(G)$ for all $2 \leq i \leq s_{1}-1$.

If $y_{1} a_{1} \in E(G)$, then $y_{1} b_{1,1}, y_{1} b_{1,2} \notin E(G)$, a contradiction to the fact that G_{x} has a perfect matching. Thus, $y_{1} a_{1} \notin E(G)$.

If $y_{1} b_{1,1}, y_{1} b_{1,2} \in E(G)$, then $\mathrm{m}(G)=\mathrm{m}\left(G_{x}\right)+\mathrm{m}\left(G_{y}\right)=\mathrm{m}\left(G_{x}\right)+2^{s_{1}-1}=2^{s_{1}}$, a contradiction. Therefore, we assume that $y_{1} b_{1,1} \in E(G)$ and $y_{1} b_{1,2} \notin E(G)$. Hence, $G \cong$ $B(4, s-1)$.

Fig. 5: Baton $B(4, s-1)$
Subcase 2.3. $|K|=1$ and $u=1$.
Assume $\alpha \in K$ and $\alpha a_{i} \in E(G)$ for all $i=1, \ldots, j$ and $\alpha a_{i} \notin E(G)$ for all $i=$ $j+1, \ldots, s_{1}-1$. We have

$$
2 s_{1}=\left|V\left(G_{1}\right)\right|=1+1+\left(s_{1}-1\right)+\sum_{i=1}^{s_{1}-1} v_{i} \geq s_{1}+1+\left(s_{1}-1\right)=2 s_{1}
$$

Hence, $v_{1}=\ldots=v_{s_{1}-1}=1$. Since G is a bipartite connected graph, $y_{1} a_{i} \in E(G)$ and $y_{1} b_{i} \notin E(G)$ for all $i=1, \ldots, j$.

If $y_{1} \alpha \in E(G)$, then $y_{1} a_{i} \notin E(G)$ for all $i=1, \ldots, j$. This implies that $y_{1} b_{i} \notin E(G)$ for all $i=1, \ldots, j$. Hence $G \cong B(2, s-1)$.

Fig. 6: Baton $B(2, s-1)$
If $y_{1} \alpha \notin E(G)$, then $y_{1} b_{1} \in E(G)$. Thus, $y_{1} a_{1} \notin E(G)$. Then $y_{1} a_{i} \notin E(G)$ for all $2 \leq i \leq j$. Therefore, $G \cong B(4, s-2)$.

Fig.7: Baton $B(4, s-2)$

If the graph G is not sequentially Cohen-Macaulay, the theorem is not true as the following example.

Example 3.3. Let G be a cycle graph of length 8. Then G is bipartite and $|V(G)|=8=2 \cdot 4$. In this case, $\mathrm{m}(G)=10>2^{4-1}+1=9$.

Fig. 8: The cycle graph of length 8.
If G be a tree, then

$$
\mathrm{m}(G) \leq f(n)= \begin{cases}2^{s} & \text { if } n=2 s+1 \\ 2^{s-1}+1 & \text { if } n=2 s\end{cases}
$$

Furthermore, $\mathrm{m}(G)=f(n)$ if and only if

$$
G \cong \begin{cases}B(1, s) & \text { if } n=2 s+1 \\ B(2, s-1) \text { or } B(4, s-2) & \text { if } n=2 s\end{cases}
$$

Proof. Since G is sequentially Cohen-Macaulay by [14, Theorem 2.13], so that the corollary follows from Theorem 3.2.

REFERENCES

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, no. 244 in Graduate Texts in Mathematics, Springer, 2008.
[2] K. Cameron, T. Walker, "The graphs with maximum induced matching and maximum matching the same size," Discrete Math., 299 49-55, 2005.
D. T. T. Ha / The number of maximal independent sets of sequentially Cohen-Macaulay...
[3] G. J. Chang and M. J. Jou., "The number of maximal independent sets in connected triangle-free graphs," Discrete Math., 197/198:169-178, 1999.
[4] C. A. Francisco and H. T. Ha, "Whiskers and sequentially Cohen-Macaulay graphs," J. Combin. Theory Ser. A. 115, 304-316, 2008.
[5] C. A. Francisco and A. Van Tuyl, "Sequentially Cohen-Macaulay edge ideals," Proc. Amer. Math. Soc., 135, 2327-2337, 2007.
[6] J. Herzog and T. Hibi, "Distributive lattices, bipartite graphs and Alexander duality," J. Algebraic Combin., 22, 289-302, 2005.
[7] T. Hibi, A. Higashitani, K. Kimura and A. B. O'Keefe, "Algebraic study on Cameron -Walker graphs," J. Algebra, 422, 257-269, 2015.
[8] D. T. Hoang and T. N. Trung, "Coverings, matchings and the number of maximal independent sets of graphs," Australas. J. Combin., 73, 424-431, 2019.
[9] M. Hujter, Z. Tuza, "The number of maximal independent sets in triangle-free graphs," SIAM J. Discrete Math., 6 284-288, 1993.
[10] J. Liu, "Maximal independent sets in bipartite graphs," J. Graph. Theory, 17, 495-507, 1993.
[11] J. W. Moon and L. Moser, "On cliques in graphs," Israel J. Math., 3, pp. 23-28, 1965.
[12] B. E. Sagan, "A note on independent sets in trees," SIAM J. Discrete Math., 1, 105-108, 1988.
[13] R. P. Stanley, Combinatorics and commutative algebra, Second edition, Progress in Mathematics 41, Birkhuser, 1996.
[14] A. Van Tuyl and R. H. Villarreal, "Shellable graphs and sequentially Cohen-Macaulay bipartite graphs," J. Combin. Theory, Ser. A,115, 799-814, 2008.
[15] H. S. Wilf, "The number of maximal independent sets in a tree," SIAM J. Algebraic Discrete Methods, 7, 125-130, 1986.

TÓM TẮT

SỐ CÁC MẠT CỰC ĐẠI
 THUỘC CÁC ĐỒ THỊ COHEN-MACAULAY DÃY HAI PHÀ̀N

Dào Thị Thanh Hà
Trường Dại học Vinh
Ngày nhận bài $05 / 5 / 2021$, ngày nhận đăng $19 / 7 / 2021$

Chúng tôi chặn số các tập độc lập cực đại thuộc các đồ thị Cohen-Macaulay dãy hai phần và đặc trưng hoàn toàn được các đồ thị giúp có chặn đúng.

Từ khóa: Đồ thị; tập độc lập; Cohen-Macaulay dãy.

[^0]: 1) Email:thahanh@yahoo.com
