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Abstract: We determine the maximum number of maximal independent sets
of sequentially bipartite graphs and we give a completed characterization of the
extremal graphs.
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1 Introduction and results

Let m(G) be the number of maximal independent sets of a simple graph G. Around
1960, Erdös and Moser raised the problem of determining the largest number of m(G) in
terms of its order, say n in this paper, and determining the extremal graphs. In 1965, Moon
and Moser [11] solved this problem for any simple graph.

This problem now has been focused on various classes of graphs (see e.g. [3, 9. 10, 15]).
For the simplest case, Wilf [15] was the first to to prove that if T is tree with n vertices,
then

m(T ) 6

{
2s−1 + 1 if n = 2s,

2s if n = 2s+ 1

and he also characterize those trees achieving the maximum value.
The goal of this paper is to extend this result to sequentially Cohen-Macaulay bipartite

graphs. Let G be a simple (no loops or multiple edges) undirected graph on the vertex set
V (G) = {1, . . . , n}. Let K be a field and R = K[x1, . . . , xn] the polynomial ring over K.
Then, we can associate to G a quadratic square-free monomial ideal

I(G) = (xixj | {i, j} ∈ E(G)) ⊂ R,

where E(G) is the edge set of G. The ideal I(G) is called the edge ideal of G. Using the
Stanley-Reisner correspondence, we can associate to G the simplicial complex ∆(G) where
I∆(G) = I(G).

Notice that the faces of ∆(G) are the independent sets or stable sets of G, i.e. S is a
face of ∆(G) if and only if there is no edge of G joining any two vertices of S. Thus, m(G)
is just the number of maximal sets of ∆(G) (with respect to inclusion).

Note that the property of being sequentially Cohen-Macaulay, a condition weaker than
being Cohen-Macaulay, was introduced by Stanley [13] in connection with the theory of
nonpure shellability. A graded R-module M is called sequentially Cohen-Macaulay (over k)
if there exists a finite filtration of graded R-modules

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M

1) Email:thahanh@yahoo.com
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such that each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions of the quotients are
increasing:

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

We say that a graph G sequentially Cohen-Macaulay if R/I(G) is sequentially Cohen-
Macaulay. The class of sequentially Cohen- Macaulay graphs have been interested by many
authors (see [4, 5, 6, 14]).

The main result of this paper is to extend the result of Wilf to the sequentially Cohen-
Macaulay bipartite graphs. Recall that a graph G is bipartite if the vertex set V (G) can be
partitioned into two disjoint sets V (G) = V1 ∪ V2 such that every edge of G contains one
vertex in V1 and the other in V2. The couple (V1, V2) is called a bipartition of G.

Example 1.1. All trees are sequentially Cohen- Macaulay (see [14, Theorems 2.13 and
3.10].

For integers i > 1 and j > 0, we define the baton B(i, j) to be the graph obtained from
a basic path P of i vertices by attaching j paths of length two to the endpoints of P (see
Figure 1 below).

B(1, j) B(2, j)

B(4, j)

Fig. 1: Batons.

Then, the main result of the paper is the following theorem.

Theorem 3.2. Let G a connected sequentially Cohen-Macaulay bipartite graph with n ver-
tices. Then,

m(G) 6 f(n) =

{
2s if n = 2s+ 1,

2s−1 + 1 if n = 2s.
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Furthermore, m(G) = f(n) if and only if

G ∼=
{
B(1, s) if n = 2s+ 1,

B(2, s− 1) or B(4, s− 2) if n = 2s.

2 Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E(G). An edge e ∈ E(G)
connecting two vertices x and y will be also written as xy (or yx). In this case, it is said
that x and y are adjacent. A set of vertices of G is independent if every pair of its vertices
is not adjacent.

A path P of G is a sequence of vertices

P : v0, v1, . . . , vk

such that vi−1vi is an edge of G for i = 1, . . . , k. Then, we say that P connects two vertices
u and v; and k is the length of P .

A cycle in the graph G is a non-empty path in which the only repeated vertices are the
first and last vertices. The length of a cycle is the number of edges involved

A connected graph without cycles is called a tree.
A graph G is connected whenever there is a path between every pair of vertices. A graph

is called totally disconnected if it is either a null graph or it contains no edge. If G is totally
disconnected graph, then m(G) = 1.

Let v be a vertex of G. The neighborhood of v in G is the set

NG(v) = {u ∈ V (G) | uv ∈ E(G)}.

The number degG(x) = |NG(x)| is called the degree of x in G. If degG(v) = 0, then v is
called an isolated vertex of G; and if degG(v) = 1, then v is called a leaf of G.

For a subset S of V (G), the subgraph of G obtained from G by removing all vertices
in S and their incident edges, denoted by G \ S. The graph G \ (V (G) \ S) is called the
induced subgraph of G on the vertex S, and denoted by G[S].

For a vertex v of G, we denote G \ v = G \ {v} and Gv = G \ ({v} ∪NG(v)).

Lemma 2.1. [15] If H is an induced subgraph of G, then

m(H) ≤ m(G).

Lemma 2.2. [9, Lemma 1] Let G be a graph. Then

1. m(G) ≤ m(Gv) + m(G \ v), for any vertex v of G.

2. If v is a leaf adjacent to u, then m(G) = m(Gv) + m(Gu).

Lemma 2.3. [14, Lemma 2.8] If G is a sequentially Cohen-Macaulay bipartite graph, then
there is v ∈ V (G) with degG(v) = 1.
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A matching in G is a setM of edges so that no two of which meet a common vertex. The
matching number ν(G) of G is the maximum size of matchings of G. If every vertex of G is
incident to an edge of M , then M is called a perfect matching. Note that |V (G)| > 2ν(G)
and the equality occurs if and only if G has a perfect matching.

An induced matchingM in a graph G is a matching where no two edges ofM are joined
by an edge of G. The induced matching number ν0(G) of G is the maximum size of induced
matchings of G. We always have ν0(G) ≤ ν(G); and if ν0(G) = ν(G) then G is called a
Cameron-Walker graph after Hibi et al. [7].

Cameron and Walker [2] gave a classification of the simple graphs G with ν(G) = ν0(G);
such graphs now are the so-called Cameron-Walker graphs (see [7]).

Lemma 2.4. ([2, Theorem 1] or [7, p. 258] A graph G is Cameron-Walker if and only if it
is one of the following graphs:

1. a star;

2. a star triangle;

3. a finite graph consisting of a connected bipartite graph with bipartition (A,B) such
that there is at least one leaf edge attached to each vertex i ∈ A and that there may
be possibly some pendant triangles attached to each vertex j ∈ B.

Example 2.5. Let G be Cameron-Walker graph with 8 vertices in Figure 1. Then ν(G) =
ν0(G)2 and the maximal independent sets of G are

{1, 2, 5, 6, 7, 8}; {3, 4}; {3, 5, 6}; {4, 7, 8}

Hence, m(G) = 4.

1 2

4 3

5 6 7 8

Fig. 2: Cameron-Walker bipartite graph.

Lemma 2.6. Let G be a bipartite graph. Then m(G) ≤ 2ν(G). Furthermore, the equality
occurs if and only if G is a Cameron-Walker bipartite graph.

Proof. Follows from [8, Corollary 3.4].

3 The proof of the main result

We begin with the following lemma.
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Lemma 3.1. Let r, s1, . . . , sr be positive integers. Then

r∏
i=1

(2si−1 + 1) +
r∏
i=1

2si−1 ≤ 2
∑r

i=1 si + 1

and the equality only when s1 = · · · = sr = 1 or r = 1.

Proof. We prove by the induction on r. If r = 1, then it is obvious.
If r > 1, then we assume that s ≤ si for all i = 1, · · · , r. We will show that

(2s−1 + 1)

r∏
i=1

(2si−1 + 1) + 2s−1
r∏
i=1

2si−1 ≤ 2s+
∑r

i=1 si + 1.

We have

(2s−1 + 1)

r∏
i=1

(2si−1 + 1) + 2s−1
r∏
i=1

2si−1

= (2s−1 + 1)
[ r∏
i=1

(2si−1 + 1) +

r∏
i=1

2si−1
]
−

r∏
i=1

2si−1

≤ (2s−1 + 1)(2
∑r

i=1 si + 1)−
r∏
i=1

2si−1

≤
[
2s+

∑r
i=1 si + 1

]
+ 2

∑r
i=1 si(1− 2s−1) + (2s−1 − 2

∑r
i=1 si−r).

Since 1 ≤ s ≤ si for all i and (s − 1) ≤ r(s − 1) ≤∑r
i=1 si − r, we have 1 − 2s−1 ≤ 0 and

2s−1 ≤ 2
∑r

i=1 si−r. Thus, inequality is proved.
Now the equality holds only when r = 1 or s1 = · · · = sr = 1. This completes the proof

of the lemma.

The main result of this paper is to establish the maximum value of m(G) for a connected
sequentially Cohen-Macaulay bipartite graph G.

Theorem 3.2. Let G a connected sequentially Cohen-Macaulay bipartite graph with n ver-
tices. Then,

m(G) 6 f(n) =

{
2s if n = 2s+ 1,

2s−1 + 1 if n = 2s.

Furthermore, m(G) = f(n) if and only if

G ∼=
{
B(1, s) if n = 2s+ 1,

B(2, s− 1) or B(4, s− 2) if n = 2s.

Proof. We first consider the case n is odd, i.e. n = 2s + 1 for some s > 0. Note that
ν(G) 6 s, so that m(G) 6 2s by Lemma 2.6. Furthermore, the inequality occurs if and
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only if ν(G) = ν0(G) = s. It follows that G has an induced matching with s edges, say
M = {a1b1, . . . , asbs}.

Since |V (G)| = 2s + 1, there is another vertex v which is not incident to any edge in
M . Note that G is connected, we may assume that v is adjacent to ai for all i. Since G is
bipartite, v is not adjacent to bi for all i. This means that G = B(1, s), and the theorem is
proved for this case.

Assume that n is even, i.e. n = 2s for some s > 1. Note that ν(G) 6 s. If ν(G) < s,
then m(G) 6 2ν(G) 6 2s−1, and the theorem holds for this case.

Therefore we may assume that ν(G) = s, i.e. G has a perfect matching. We prove the
theorem by the induction on ν(G). If ν(G) = 1, then G is is a graph with one edge, and
then the assertion is trivial.

Assume that ν(G) > 1. By Lemma 2.3, there is a vertex x ∈ V (G) such that degG(x) =
1. Set xy ∈ E(G) (see Figure 3). Then, Gx has a perfect matching and ν(Gx) = ν(G)− 1.

G1 G2 Gr

x

y

Fig. 3: x is a leaf of G

Let G1, . . . , Gr be connected components of Gx. Then, they are sequentially Cohen-
Macaulay by [14, Theorem 3.3]. Observe that each Gi has a perfect matching, bipartite and
si := ν(Gi) ≤ ν(Gx) = ν(G) − 1. Then

∑r
i=1 si = ν(Gx) = ν(G) − 1. By the induction

hypothesis, m(Gi) ≤ 2ν(Gi)−1 + 1 for all i. We have

m(Gx) =
r∏
i=1

m(Gi) ≤
r∏
i=1

(2si−1 + 1). (3.1)

Let G′i := Gi \NG(y). Since G is connected, NGi(y) 6= ∅. Hence, ν(G′i) ≤ ν(Gi)− 1 = si− 1
because Gi has a perfect matching. Together with Lemma 2.6, it yields

m(Gy) ≤
r∏
i=1

m(G′i) ≤
r∏
i=1

2ν(G′
i) ≤

r∏
i=1

2si−1. (3.2)

By Lemma 2.2(2) and inequations (3.1) and (3.2), we have

m(G) = m(Gx) + m(Gy) ≤
r∏
i=1

(2si−1 + 1) +
r∏
i=1

2si−1.
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By Lemma 3.1, m(G) ≤ 2
∑r

i=1 si + 1 = 2ν(G)−1 + 1.
Now, we prove the last assertion. If the equality holds, r = 1 or ν(G′1) = . . . = ν(G′r) =

s1 = . . . = sr = 1. We next divide the rest of the proof into two cases:

Case 1: ν(G′1) = . . . = ν(G′r) = s1 = . . . = sr = 1.

Since si = 1, so Gi is one edge xiyi for all i. If yxi, yyi ∈ E(G) for some i, then G′i = ∅,
a contradiction to ν(G′i) = 1. Since G is connected, we may assume that yxi ∈ E(G) and
yyi /∈ E(G) for all i. Therefore, G ∼= B(2, s− 1) (see Figure 4).

x

y

x1

y1

x2

y2

xs−1

ys−1

Fig. 4: G Baton B(2, s− 1)

Case 2: r = 1.

Note that G′1 = Gy. We have m(Gy) = m(G′1) = 2ν(G′
1) and ν(Gy) = ν(G′1) = s1 −

1. Thus, m(Gy) = 2ν(Gy). By Lemma 2.6, Gy is a Cameron-Walker bipartite graph. Let
H1, . . . ,Ht be connected components of Gy. Then Hi is Cameron-Walker bipartite graphs
for all i with partition (Ki;Ti) such that there is at least one leaf edge attached to vertex in
Ti. Let Hi is a star ({ai}; {bi,1, . . . , bi,vi}) where vi ≥ 1 and 1 ≤ i ≤ s1−1. Let K := ∪ti=1Ki

and T := ∪ti=1Ti. Since Gy is a Cameron-Walker graph, |T | = ν(Gy) = s1 − 1.
Since G1 has a perfect matching, |V (G1)| = 2s1. Then n = 2s1 + 2. Let NG[y] =

{x, y, y1, . . . , yu}. We have

|V (Gy)| ≥ |K|+ 2|T | ⇔ n− |NG[y]| ≥ |K|+ 2(s1 − 1)

⇔ (2s1 + 2)− (2 + u) ≥ |K|+ 2(s1 − 1)

⇔ |K|+ u ≤ 2.

Subcase 2.1. |K| = 0 and u = 2.

Indeed, we have

2s1 = |V (G1)| = 2 + (s1 − 1) +

s1−1∑
i=1

vi ≥ 2 + (s1 − 1) + (s1 − 1).

Hence, v1 = . . . = vs1−1 = 1. Since G is a bipartite connected graph, we may assume that
y1a1 ∈ E(G) and y1b1,1 /∈ E(G). Since NG(b1,1) = {a1} and {b1,1, y1} ⊆ NG(a1), we have
m(G) = m(Ga1) + m(Gb1,1) = 2s1−1 + m(Gb1,1) ≤ 2s1−1 + 2s1−1 = 2s1 , a contradiction.
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Subcase 2.2. |K| = 0 and u = 1.

Indeed, if v1 = . . . = vs1−1 = 1, then m(G) = m(Gx) + m(Gy) = 2s1−1 + 2s1−1 = 2s1 , a
contraction. Therefore, without loss of generality, we may assume v1 ≥ 2. We have

2s1 = |V (G1)| = 1 + (s1 − 1) +

t∑
i=1

vi ≥ 1 + (s1 − 1) + s1.

Hence, v1 = 2 and v2 = . . . = vs1−1 = 1. Since G is a bipartite connected graph, we may
assume y1ai ∈ E(G) and y1bi /∈ E(G) for all 2 ≤ i ≤ s1 − 1.

If y1a1 ∈ E(G), then y1b1,1, y1b1,2 /∈ E(G), a contradiction to the fact that Gx has a
perfect matching. Thus, y1a1 /∈ E(G).

If y1b1,1, y1b1,2 ∈ E(G), then m(G) = m(Gx) + m(Gy) = m(Gx) + 2s1−1 = 2s1 , a
contradiction. Therefore, we assume that y1b1,1 ∈ E(G) and y1b1,2 /∈ E(G). Hence, G ∼=
B(4, s− 1).

x y

b2,1 a2

bs1−1,1 as1−1

y1 b1,1 a1 b1,1

Fig. 5: Baton B(4, s− 1)

Subcase 2.3. |K| = 1 and u = 1.

Assume α ∈ K and αai ∈ E(G) for all i = 1, . . . , j and αai /∈ E(G) for all i =
j + 1, . . . , s1 − 1. We have

2s1 = |V (G1)| = 1 + 1 + (s1 − 1) +

s1−1∑
i=1

vi ≥ s1 + 1 + (s1 − 1) = 2s1

Hence, v1 = . . . = vs1−1 = 1. Since G is a bipartite connected graph, y1ai ∈ E(G) and
y1bi /∈ E(G) for all i = 1, . . . , j.

If y1α ∈ E(G), then y1ai /∈ E(G) for all i = 1, . . . , j. This implies that y1bi /∈ E(G) for
all i = 1, . . . , j. Hence G ∼= B(2, s− 1).

x y

bj+1 aj+1

bs1−1 as1−1

y1 α

a1 b1

a2 b2

aj bj

Fig. 6: Baton B(2, s− 1)

If y1α /∈ E(G), then y1b1 ∈ E(G). Thus, y1a1 /∈ E(G). Then y1ai /∈ E(G) for all
2 ≤ i ≤ j. Therefore, G ∼= B(4, s− 2).
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x y

bj+1 aj+1

bs1−1 as1−1

y1 b1 a1 α

a2 b2

a3 b3

aj bj

Fig.7: Baton B(4,s-2)

If the graph G is not sequentially Cohen-Macaulay, the theorem is not true as the
following example.

Example 3.3. Let G be a cycle graph of length 8. Then G is bipartite and |V (G)| = 8 = 2·4.
In this case, m(G) = 10 > 24−1 + 1 = 9.

Fig. 8: The cycle graph of length 8.

If G be a tree, then

m(G) ≤ f(n) =

{
2s if n = 2s+ 1,

2s−1 + 1 if n = 2s.

Furthermore, m(G) = f(n) if and only if

G ∼=
{
B(1, s) if n = 2s+ 1,

B(2, s− 1) or B(4, s− 2) if n = 2s.

Proof. Since G is sequentially Cohen-Macaulay by [14, Theorem 2.13], so that the corollary
follows from Theorem 3.2.
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TÓM TẮT

SỐ CÁC MẶT CỰC ĐẠI

THUỘC CÁC ĐỒ THỊ COHEN-MACAULAY DÃY HAI PHẦN

Đào Thị Thanh Hà
Trường Đại học Vinh

Ngày nhận bài 05/5/2021, ngày nhận đăng 19/7/2021

Chúng tôi chặn số các tập độc lập cực đại thuộc các đồ thị Cohen-Macaulay dãy hai
phần và đặc trưng hoàn toàn được các đồ thị giúp có chặn đúng.

Từ khóa: Đồ thị; tập độc lập; Cohen-Macaulay dãy.

50


