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Abstract: In this paper, we introduce some laws of large numbers for
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2-dimensional structure. Our results are extensions for corresponding ones in the
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1 Introduction

The notion of dependence is negatively associated which was first introduced in 1981 by
Alam and Saxena [1], and carefully studied by Joag-Dev and Proschan [3] in 1983. In the
last years, there has been growing interest in concepts of negative association for families
of random variables because of their wide applications in multivariate statistical analysis,
reliability theory, percolation, and statistical physics. In this paper, we consider the above
dependence notion in the space of upper semicontinuous functions with multidimensional
indices.

Random upper semicontinuous functions were introduced to the model of random ele-
ments that take values being upper semicontinuous functions (see [2, 8, 10]). Limit theorems
for the class of random upper semicontinuous functions have received much attention be-
cause of their usefulness in several applied fields, especially, one of them is the law of large
numbers. The laws of large numbers for random upper semicontinuous functions (or fuzzy
random sets) have been studied by many authors such as Joo and Kim [4], N. V. Quang
and D. X. Giap [7], N. T. Thuan and N. V. Quang [10], etc.

The concepts of negatively associated, negatively dependent for random upper semi-
continuous functions were presented by N. T. Thuan and N. V. Quang [10] and they also
obtained some laws of large numbers for the class of these dependent functions with the
sequence structure. The aim of this paper is to prove some laws of large numbers for dou-
ble arrays of negatively associated random upper semicontinuous functions under various
settings. To obtain these limited results, we have to establish some maximal inequalities for
double arrays of negatively associated random variables and negatively associated random
upper semicontinuous functions.

1 Email:dxgiap@gmail.com (D. X. Giap)
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2 Preliminaires

Throughout this paper, let (Q2,.4, P) be a complete probability space. In the present
paper, R (resp. N) will denote the set of all real numbers (resp. positive integers). In this
section, we sum up some basic notions and related properties for random upper semicon-
tinuous functions which were presented in [2, 5, 10].

Let K be the set of compact intervals of R. If x is an element of K then it will be denoted
by = = [x(l);w(z)], where (1), 2(2) are two end points. The Hausdorff distance dy on K is
defined by

dp (w,y) = max{|z™) — yD|;[a®) =y} 2,y € K.

A linear structure in K is defined as follows:

g — Az Az@)] if A >0
v Az xzM] if A < 0.

For a function u : R — [0; 1], the a-level set of u is defined by [u]o, = {z € R : u(z) > a}
for each o € (0;1]. For each a € [0;1), [u]ot+ denotes the closure of {x € R : u(z) > a}.
In particular, [u]o4 is called the support of u and denoted by suppu. The function u :
R — [0;1] is called upper semicontinuous function if only if [u], is the closed set for all

€ (0,1]. A upper semicontinuous function u : R — [0;1] is called quasiconcave function

if u(Az + (1 — N)y) > min{u(z),u(y)} for all z,y € R, and its equivalent condition is that
[u]o is a convex subset of R for every o € (0;1]. Let U denote the family of all upper
semicontinuous functions u : R — [0; 1] satisfying the following conditions

(i) supp u is compact;

(i) [uls 0

(iii) u is quasiconcave.
Therefore, if v € U then for each a € (0;1], [u]o is an interval of R and denoted by
[u]o = [[u]g); [u]g)], where [u]g}) and [u]g) are two end points of the interval.

The addition and scalar multiplication on U are defined by

B ‘ L[ u(Z2) A£0
(uto)a) = swp minfuly)o(:)), () = { 407 17D

where u,v € U, A € R and 0 = I1oy is the indicator function of {0}. Then for u,v € U, A € R
we have [u + v]o = [u]q + [V]a and [Au)q = A[u], for each « € (0;1].
The following metrics on U are often used: for u,v € U

Doo(u,v) = sup du([u]a, [v]a) = sup du([u]a, [v]a)-
a€(0:1] a€l0;1]

It is known that the metric space (U, Do) is complete but not separable (see [5]). For u € U,
denote ||u||oo = Doo(u,0).
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As introduced in [2], the mapping (.,.) : K X K — R is defined by
(a,b) = %(a(l)b(l) + a(z)b(z)), where a = [V, a®],b = b1, b)),

and another metric d, on K is defined by

1/2 1 2 9 1/2
di(a,b) = ((a,a) — 2(a,b) + (b,b)) '~ = (2 ((a(l) — b(l)) + (a(2) _ b(2)) >> _

It is easy to check that the metric space (I, d,) is complete and separable (see [10]).
As in [2], define (.,.) : U x U — R by

(10) = [ (s oo} do
0

For u,v € U, denote

1 1/2
D, (u,v) = ((u,u) — 2(u,v) + <U,v>>1/2 _ </dz([u]a, [v]a)doz> .
0

It is clear that D, is a metric on U and we also deduce that the metric space (U, D) is
separable but not complete. For u € U, denote ||u, = Dy (u,0).

A mapping X : Q — K is called a K-valued random variable if X~'(B) € A for all
B € B(K), where B(K) is the Borel o-algebra on (I, df).

A mapping X : Q — U is called a U-valued random variable (or random upper semicon-
tinuous function) if [X]s [X]a is a K-valued random variable for all a € (0; 1].

For p > 0, denote by L (U) the class of U-valued random variables X satisfying
E||X||% < oo (where the symbol @ represents the %, co). If X € L1 (i) then X is said
to be Doo-integrable, this implies that [X ],(11) and [X ]&2) are integrable real-valued random
variables for all a € (0;1].

Let X be a Dyo-integrable U-valued random variable. Then, the expectation of X, de-
noted by EX, is defined as an upper semicontinuous function whose a-level set [EX], is
given by

[EX]a = [[EX]OEX]D)] = [EX)Y; EIX]D)]

«

for each v € (0; 1].
For X,Y € L (U) N L2(U), the notions of variance of X and covariance of X,Y were
introduced in [2] as follows:

Cov(X,Y) = E(X,Y) — (EX,EY),
VarX = Cov(X, X) = E(X,X) — (EX, EX).
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We also obtain the following property of the variance (see [2])

1
VarX = ;/ (Var([X]al)) + Var([X]o?)))da — ED(X, EX).
0

For a,b € R, max{a, b} will be denoted by a Vb and min{a, b} will be denoted by a A b.

For convenience, from now until the end of the paper, we use Sy, = > Z Xij,m=>1,
i=14=1
n > 1.
Let {byn,m > 1,n > 1} be a 2-dimensional array of real numbers. We define

Abpn = bmn — bmn—1 — bm—1,n + b—1,n—1, for every m > 1,n > 1,

with the convention that b,,, = 0 if m.n = 0.

3 Main Results

Definition 3.1. (1) A finite family {X;, Xo,..., X} of real-valued random variables is
said to be negatively associated if for any disjoint subsets A1, A2 of {1,2,...,n} and any
real coordinatewise nondecreasing functions f; on R41l. f5 on RI42l, then

Cov[fi(Xi,i € A1), fo(Xj,j € A2)] <0,

whenever the covariance exists, where |A| denotes the cardinality of A.

An infinite family of random variables is negatively associated if every finite subfamily
is negatively associated.

(2) Let {X,n,m > 1,n > 1} be a double array of K-valued random variables . Then,
{Xmn,m > 1,n > 1} is said to be negatively associated if {Xr(,%%,m > 1,n > 1} and
{XT(nQ,)Z, m > 1,n > 1} are double arrays of negatively associated real-valued random vari-
ables.

(3) Let {Xy;um,m > 1,n > 1} be a double array of U-valued random variables. Then
{Xmn,m > 1,n > 1} is said to be level-wise negatively associated if {[Xmnla,m > 1,n > 1}
are double arrays of negatively associated K-valued random variables for all « € (0;1].

Now we proceed to state our main results. At first, we need some results which will be
used later.

Proposition 3.2. Let {X,,,,m > 1,n > 1} be a double array of negatively associated real-
valued random variables with EX,,, = 0 va EX?,m < oo, m>1,n>1. Then there exists
a positive constant C such that for every m > 1,n > 1

(@%'ZZXUI) c(y mxz)” (3.1)

=1 j=1 =1 j=1

29



D. X. Giap, N. V. Quang, B. N. T. Ngoc |/ Some laws of large numbers for double arrays...

Proof. The proof is based on a good idea of Utev and Peligrad (see [11, Proposition 3.1].
For each m > 1,n > 1, define

k l m n

1/2

= SUD (E(kgnal}i yZZX]D/(ZZE)@]) ) (3.2)
X e i=1 j=1

where the supremum is taken over all fields X := {X;;} of square-integrable centered

m n
negatively associated random variables with > > EXEJ- > 0.
i=1j=1
Fix such a random field {X;;} and also without loss of generality assume that

m n
YY) EXY=1.

i=1 j=1

Let M be a positive integer that will be specified later. Let f(z) = (=M ~Y2)va)AM~1/2,
ie. flw) = =M Y20 ppoagmy + @ d(yepr-12y + MY T ymapy. For 1< i < om,
1 < j <n define: gij = f(XU) — Ef(Xz]) and 5 = Xz'j — &J Then both {fzj} and {771]}
are double arrays of negatively associated real-valued random variables. Since

Elngl = El(Xi — f(X45) — BE(Xi5 — f(X45))| (by EX;5 =0)
2E|Xij — f(Xi5)]
2E)(Xij + M*I/Z).I(Xij«Mfl/z) + (X5 — M*1/2).I(Xij>M71/z)

IN

2E(|Xij + M_1/2|'I(Xij<fM_1/2) + ‘Xij — M_1/2|'I(X¢j>M_1/2)>

< QE(‘X,‘J‘|.I(X1_J_<_M71/2) + ‘Xij|'I(Xij>M*1/2)>
= 2E ‘Xij'l(lxij|>M_l/2)

< 2MYVPEXZI(x, 1sm-1/2)

< 2M'Y?EX3.

This implies that

m n m n
SN Elmil <2M'2> N EXY =2M'2,

i=1 j=1 i=1 j=1
Therefore,
kol ko1
E max ZZXU < FE max ZZ&M +2MY/2,
k<m,l<n | 4 - k<m,l<n | 4 -
i=1 j=1 =1 j=1

k
2.

i=1

To estimate £ max , we shall use a blocking procedure.

k<m,l<n

!
> ij
7j=1
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Take ug = 0 and define the integers u; recursively by

u m
1
ut:min{u:u>ut_1, Z ZEE?J>M}

j=up_1+1 i=1
Note that, if we denote by s the number of integers produced by this procedure, we have

s—1 u
s—1 i

Z Z ZESZ]<1sothats<M

t=1 j=ut_1+1 i=1

Write S}, = > > &jfor 1 <t < s—1 and for convenience, u; = n that is
j=ur_141i=1
Sie= 2 > & Huv=u for 1 <t<sthen
j=us_1+14=1

\ZZ&J

=1 j=1
and if us_1 < v < u for 1 <t < s then

‘Zk:ifij

i=1 j=1

- ‘Zsky

IN

‘§52j+‘ Zv: i&p
j=1

p=ut_1+1 i=1

+ max
Ut—1 <v<ut

t—1 v k
< [y, S
i=1

p=ut—1+1 i=1

This implies that

E max
k<m,l<n

S

< FE max max’ g S;.;| + F max max max
1<t<s ksm | J
]:

v k
E E gz’p
1<t<s k<m \ ut—1<v<ug

p=ut—1+1 i=1
I; +Io.

)

For 1;, we have

S Ut
B S i
B S AR 91D 91 B ol
t=1 =1 \Jj=ut—1+1
PutY; =

> &y, since {&;;} is a double array of mean zero negatively associated real-
Jj=ut—1+1

valued random variables then for each ¢, {Y;} is also a sequence of mean zero negatively
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associated real-valued random variables. By applying [9, the inequality (1.6) of Theorem 2]
for p = 2 and by Liapunov’s inequality, we obtain the inequality (3.1) for the case of the
sequence of random variables with C' = V2. Combine this with the negative association of
the sequence {&;; : uy—1 +1 < j < wy} of mean zero random variables, we obtain

k
E ’S” - E ‘ Y,
max | Sy max Z f

A
5
/N
\'M
=
N
~—

INA
S
-/\
™
;
™
ey
oo,
—

Moreover, by the definition of u; we have

Ut

m Ut m 1/2
3 ZE§%>A14sothatM1/2< 3 ZE&%) > 1

Jj=us—1+1 i=1 Jj=us—1+1 i=1

Therefore,
s Ut m 1/2 s Ut m m n
S 3 Seg) <ty S0 Soegcartyyre
t=1 \ j=us_1+1 i=1 t=1 j=us_1+1 i=1 i=1 j=1

Hence, I1 < VoMY/2,
For I, we obtain

IN

v k 4
(I)* E max max max g E fip‘
1<t<s k<m up—1<v<<ut

p=ut—1+1 i=1
EFmax max

v k 4
k<m ut—1<v<ug Z Z &p’ '

t=1 p=ur—1+1 i=1

IN

On the other hand, by applying the Lemma A.2 [12] in the case d = 2 and p = 4, we get

v k 4
> k|
p=ut—1+1 i=1
v k
> DG

p=u¢_1+1 i=1

Fmax max
k<m ut—1<v<uy

)

k<m ut—1<v<ut

< C’{(Emax max
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us—1 us—1 m 9
£ 5 Sege (8 sy
p=ut—1+1 i=1 p=uz_1+1 i=1

By the definition of &;;, u; and by using the notation (3.2) for am,,, we obtain

'U,tfl

@ 1

p=ut_1+1 i=1

> Ye

p=ut_1+1 i=1

(E max max
k<m ut—1<v<ut

1 ur—1 m 4
) ot 5 Srg) <t

p=ut—1+1 i=1

and up—1 up—1
PRI MZZ“ <
Hence
(Ib) <CZ( o+ 1) SC m"M+5.
Combining above estimates for I; and Io, we get
kol kool
B, max | ;;X” < B max 2;@ +oM?

< V2MY? 4 (%) P+ (%) Yo

(%) Vamn+ (%) SRV

Therefore, by the definition of a,,,

o < () "o+ (5p) "+ (V2R 220
Letting M = [16C] + 1 yields
G < 24 2(V2 + 2) M2,
The proof is now completed. O

Remark 3.3. The result of Proposition 3.2 was also introduced in [L. X. Zhang (2006),
Maximal inequalities and a law of the iterated logarithm for negatively associated random
fields, arXiv:math/0610511 [math.PR]]. However, in L. X. Zhang’s proof, some specific
estimates seem not so clear. In this paper, we demonstrate the Zhang’s result in more
detail.

Combining the Lemma A.2 [12] and (3.1) we obtain the Rosenthal’s type moment in-
equality for the maximum partial sums.
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Proposition 3.4. Let p > 2 and let {Xn,m > 1,n > 1} be a double array of negatively
associated real-valued random variables with EXpy, = 0 and EX?2, < oo, m > 1,n > 1.
Then there exists a constant Cp, depending only on p such that for every m > 1,n > 1, we

have
ko1 , m n ) /2 m n )
B max | ;;XU\ < Cp{ <;;EX]> + ;;E\X”] . (33)

In 2000, Q. M. Shao [9] established inequality (3.3) for the case of the sequence of
negatively associated random variables.

The following theorem establishes Hajek-Rényi’s type maximal inequality for an array
of level-wise negatively associated U-valued random variables and this result is obtained
in the setting with respect to metric D,. It plays the key role to derive the laws of large
numbers.

Theorem 3.5. Let {byn,m > 1,n > 1} be a 2-dimensional array of positive real numbers
with Abp,y, > 0 for allm > 1,n > 1. Assume that {Xn, m > 1,n > 1} is a double array of
Do -integrable, level-wise negatively associated U-valued random variables with E|| Xy ||? <
oo, m > 1,n > 1. Then, there exists a positive constant C' such that for any € > 0 and for
any 1 <s<m, 1<t <n,

C m n XZ
(5<k<mat<l<n bkl (SklvESkl > 8) < 72 ZZ b Yar ] (34)

Proof. By Markov’s inequality, we have

P( max - D.(Su, ESk) > )

s<k<m,t<I<n by

s<k;<m t<l<n 2bkl

£
D, (Ski, ESki) > 5)
) >

1 £
= ————D.(Su, BSu) > )
< (s<k<mt<l<n bar + bay Di(Su, ESp) = 5

1 g
= 7D* Sk, ESk) > 7)
< (1<k<m 1<i<n b + byy (Ski, ESk1) > 5

1 2
: o D.(Sy, ES))
< 52 <1§k§m,1§l§n bt + bry (Ski, ESk1)

4 1

*E( —— _D?*(Su, ES )
g2 1gkgr?na}f(gzgn (bst + byr)? + (St i)

By putting rg; = bst + by, we derive

1
1
mD (Sk‘lyESkl Z/di Skl ou ESkl] >d
0
,
T2 (([Skl]g) — [ESu)” + (5wl - [ESkl]o?))Z) da
Kl
0
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kol ko1
1 1
- 221([Xij]&)—E[Xij]&)) 2 lel([Xij]&l)—E[Xij]&l))
_ 4 i=1j= i=1j=
B 2/( Tkl - Tkl
0
Moreover, for each p =1,2
kool
ZZ (p) .j](ap))
=1 j5=1
kool i g
’ (X512 - BXi) P

= 2 (XX amw)

i=1 =1 wu=1lv=1

=ZkZleAruv<ZZ i3 Xij]‘(’p))

u=1v=1 i=u j=v

7“@']'

Since Aby,y, > 0 for all m > 1,n > 1, then Ar,, > 0 and we obtain

i=1j=1

max

1<k<m,1<I<n Tkl

k
>3 (Xl - Blx;))

%

i [Xuv]gvp) - E[Xuv]((lp)

r
1v=1 uv

<4 max

SO S >

u

for each p = 1, 2. Therefore,

Sk, ES
1<k<m1<l<n k:l (kl’ k)

Zk: i (X518 - BIX5)9)

1 2
1 i—1 7=
S / max i=1j5=1 dov
2 | 1<k<m,1<I<n Tkl
0
ko 6 5
1 > 2 ([Xigla’ — E[Xijla’) 2
1 i=1j=1
—|—/ max da
2 ) 1<k<m,1<i<n Tkl
0
1 i (1) |2
o] S el
1<i<m,1<5<n Tuv
0 u=1v=1
1 i 1@ @ |2
X
+8 max Z [ uva do.

1<i<m,1<j<n

0 u=1v=1
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This implies that,

P( L p.(Su, ES )
s<kamizi<n by (Sk1, ESki) >
1 (1) 2
< 1“’ [ uv]a
B //1<z<m1<3<n ZZ dadP
u=1v=1
32 J 2 [Xu,u]((f) 2
+62//1§ig1;ﬂnjd1xgj§n ZZ dadP
Q 0 =1v=1
32 L i J [Xuv](()}) B E[Xuv}(al) 2
- 52/E1§i§17nn?1xgjgn ZZ - do
0 u=1v=1
/ 2
32 i J 2 ¥ 1@
+2/E Z Ko [ ] do
g 1<Z<m ]_<]<n ==

0
(by Fubini’s theorem).

Since { X, m > 1,n > 1} is a double array of level-wise negatively associated U-valued
random variables, then {[an]g}),m >1,n > 1} and {[an]((f),m > 1,n > 1} are double
arrays of negatively associated real-valued random variables for each « € (0;1]. Hence,
for each a ¢ (0;1], {([Xuo]® — BXu])rzl1 < w <1 < v < 5} and {([Xuo]? —
E[X, ](2)) Towsl < u <1i,1 <wv < j} are arrays of negatively associated mean zero real-
valued random variables. It follows from Proposition 3.4 that

JESp) > ¢)
(s<k<mat<l<n b D-(Sk, BSu) = &

3202/Zz”:<

021]1

1) 2

— E[x;]5)

Tij

IN

_ 6402 ZZ E/ ( D~ BIX0)? 4 (1) _E[Xz'j]g?))?))da

11]123

— 5222 E/d2 Xijla, [EXij]a)da

zlle

EDZX,,EXZ
- Sy PR

lel 1.7

V. Xl C <~ VarX;
- 222 -~ J_Qlel szaj;bsi

i=1 j=1 ’J
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Theorem 3.6. Let {byn,m > 1,n > 1} be a 2-dimensional array of positive real numbers
with Abpy, > 0 for allm > 1,n > 1 and {Xn,m > 1,n > 1} be a double array of Doo-
integrable, level-wise negatively associated U-valued random variables with E| Xmn||? < oo,

m>1,n>1.1If
Z Z V&I‘an o0, (35)

m=1n=1

then the strong law of large numbers

1
—D.(Smn, ESmn) — 0 a.s. as m An — oo (3.6)

bmn

holds.

Proof. For € > 0, by Theorem 3.5 we obtain

P( sup iD*(SM,ESM) ZE)

=l P( e 5D (S ES) > <)
I WL T R D M
t
- {z S e (S X - S s |
. €2b2 ;;Vamﬁ (;;Var)(m ;;VarXU).

By the condition (3.5) and Kronecker’s lemma for multidimensional version (see Lemma
1.1 in [6]), we have

v ZZVarXU%Oass/\t%oo

Stz 1j5=1
VarX; VarX;
and (ZZ el ZZ a Z]>—>0ass/\t—>oo.
=1 j=1 i=1 j=1

Therefore, we get
1
lim P< sup fD*<Skl,ESkl) Z 6) = 0,

sAt—00 k>s,i>t Okl

and this completes the proof. O

The following theorem establishes the weak law of large numbers for an array of level-
wise negatively associated U-valued random variables.
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Theorem 3.7. Let {X,n,m > 1,n > 1} be a double array of Do -integrable, level-wise
negatively associated U-valued random variables with E|| Xy, |2 < 0o, m > 1,n > 1. Assume
that {byn,m > 1,n > 1} be a 2-dimentional array of positive real numbers with Aby,, > 0

m n
orallm>1,n>1. Ifb 2 VarX;; — 0 as mV n — 0o, then
mn . = J
1=17j=

1
(S, : li . 3.7
- 1§kgn733f(§lgnD (Ski, ESki) — 0 in probability as m V n — 0o (3.7)

Proof. For any € > 0, by Markov’s inequality, we get

P(L max D*(Skl,ESkl) > 8) <

b 1<k<m,1<I<n

E( max D*(Skl,ESkl))2.

e2b2, " \1<k<m,1<i<n

Let us prove that

2 m n
< X
i=1 j=1
where C' is a positive constant which does not depend on m,n. Indeed, since { X, m >

](1)

1,n > 1} is a double array of level-wise NA U-valued random variables, then {[X,, m >
1,n > 1} and {[X mn}g),m > 1,n > 1} are arrays of negatively associated real-valued

random variables for each v € (0;1]. Hence

2
E( max D*(Skl,ESkl)) =F max D?(Sy1, ESi)

1<k<m,1<I<n 1<k<m,1<I<n
1

_ / (,_, max / &([Sila [BSula)da) 0P

1<k<m,1<I<n
0

IN

1
/ 1<k<m <i<n dx([Suilas [ESua) dadP
0

St _ 50\

2 E)
E | lnax d; ([Skilas [ESki]a)da (by Fubini’s theorem)

; ko1 9
1
=z 1) 1
2/E1<k<r?naf(<l<n (ZZ ([ij]a E[Xij]q >> do
0 i=1 j=1
1 ; k l 9
. 1(2) _ 12
Ts /E1<kg?nai(<l<n (Z / <[XZ]]04 E[Xz]]a )) ClOé
0 i=1 j=1
1
C m n ,
= 2/22 ( (X318 = BIxI D) + B(1x)2 - BlX,)2) )da
o =17=1
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(by Proposition 3.4)

= Ci y O/lEG ([Xz‘j]&l) - E[Xz‘j]al)>2 + %([Xz’j]fll) - E[Xz'j]fxl)y)da-

i=1 j=1

Therefore, we obtain

E( max  D.(Sk, ESkl)) :

1<k<m,1<I<n

= CZ ZE/ < & E[Xij]&l))2 + %([Xz'j]&l) - E[Xij]&l)>2>da

=1 j=1

_cZZE/cF Xijlar [EXij)a da_CZZEDQXU,EX)

i=1 j=1 i=1 j=1
=C Z Z VarXZ-j,
i=1 j=1
and this implies that the weak law of large numbers holds. O
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TOM TAT

LUAT SO LON CHO MANG HAT CHIEU
CAC HAM NGAU NHIEN NUA LIEN TUC TREN

Duong Xuan Giap ), Nguyén Van Quang (), Bui Nguyén Tram Ngoc (@)
1 Truong Dai hoc Vinh
2 Truong Pai hoc Pong Nai
Ngay nhan bai 20/4/2021, ngay nhan dang 30/6/2021

Trong bai bao nay, ching toi gidi thiéu mot s6 luat s6 16n cho mang hai chiéu cac ham
ngau nhién nita lién tuc trén lien két am theo mic véi cac gia thiét khac nhau. Chung toi
ciing thiét lap mot sé bat dang thic cuc dai cho cau tric hai chiéu. Két qua ctia ching toi
13 phan mé rong cho cac két qua tuong ng trong cac tai lieu.

T khéa: Bién ngau nhién da tri; lien két am theo mitc; ham ngau nhién nita lién tuc
trén.
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