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1 Introduction

In 2012 a new algebra, called the ¢-Brauer algebra, was introduced by Wenzl [7] for
works relating to the representation theory and C*-algebra. Since ¢g-Brauer algebra is a ¢-
deformation of the classical Brauer algebra and contains the Hecke algebra of the symmetric
group as a subalgebra, it is natural to ask whether this algebra is cellularly or not.

Cellular algebras have been stated by Graham and Lerher in [4]. In their construction
an algebra is shown to possess cellular property if we can find a suitable cellular basis of this
algebra. After that, using Graham and Lerher’ approach, a large class of diagram algebras
has been proven to be cellular algebras, such as Brauer algebra, group algebra of symmetric
groups and its deformation, Iwahori Hecke algebra [4], Partition algebra [8], BM W -algebra
[9]. In the case of the g-Brauer algebra, we do not know if this one is a diagram algebra.
That is, it is unknown if there exists a basis represented by certain diagrams for the g-
Brauer algebra. Instead of applying the method above, we are going to use Koenig and
Xi’s construction in [5] to give a suitable iterated inflation for the g-Brauer algebra. This
iterated inflation enable us show the celluar structure for the ¢g-Brauer algebra.

The article is organized as follows: In Section 2 we briefly review about the cellular
algebras following [4, 5], and necessary facts on the classical Brauer algebra following [2]
and [7]. Section 3 is used to construct an iterated inflation to the g-Brauer algebra.

2 Preliminaries

In this section we recall the original definition of cellular algebras in the sense of Graham
and Lehrer in [4] and an equivalent definition given in [5] by Koenig and Xi.

2.1 Cellular algebras

(Graham and Lehrer [4]) Let R be a commutative Noetherian integral domain with

identity. A cellular algebra over R is an associative (unital) algebra A together with cell
datum (A, M, C, i), where
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(C1) A is a partially ordered set (poset) and for each A € A, M()) is a finite set such
that the algebra A has an R-basis C’gT, where (S,7) runs through all elements of
M(X\) x M(X) for all A € A.

(C2) Let A€ Aand S,T € M(A). Then i is an involution of A such that i(CéT) = C%S.

(C3) For each A € A and S,T € M(\) then for any element a € A we have

aCir= Y 71a(U,S)Chr (mod A(< X)),
UeM())

where 7,(U, S) € R is independent of T, and A(< \) is the R-submodule of A gener-
ated by {C%, ,|u <X S, T € M(u)}.

The basis {C’g‘,T} of a cellular algebra A is called a cell basis. In [4], Graham and Lehrer
defined a bilinear form ¢, for each A € A with respect to this basis as follfows.

C3rChy = ox(T,U)CGy (mod A < X).

When R is a field, they also proved that the isomorphism classes of simple modules are
parametrized by the set

AQI{/\€A| (;5)\750}

The following is an equivalent definition of cellular algebra.

(Koenig and Xi [5]) Let A be an R-algebra where R is a commutative noetherian
integral domain. Assume there is an involution ¢ on A. A two-sided ideal J in A is called
cell ideal if and only ifi(J) = J and there exists a left ideal A C J such that A is finitely
generated and free over R and such that there is an isomorphism of A-bimodules o : J =~
A®pri(A) (where i(A) C J is the i-image of A) making the following diagram commutative:

J—SA®Ri(A)
i Jx@y»ﬂi(y)@i(x)
T —SA®Ri(A)

The algebra A with the involution i is called cellular i fandonlyif there is an R-module
decomposition A = J; @ J, @ ....J,, (for some n) with ’L(Jj,) = J; for each j and such that
setting J; = @‘zj:v]l/ gives a chain of two-sided idealsof A: 0=JoC J1 C o C...CJ, =4
(each of them fixed by i) and for each j (j = 1,...,n) the quotient J]l- = J;j/Jj—1is a cell
ideal (with respect to the involution induced by ¢ on the quotient) of A/J;_;.

Recall that an involution 7 is defined as an R-linear anti-automorphism of A with i? = id.
The A's obtained from each section J;/Jj—1 are called cell modules of the cellular algebra
A. Note that all simple modules are obtained from cell modules [4].

In [5], Koenig and Xi proved that the two definitions of cellular algebra are equivalent.
The first definition can be used to check concrete examples, the latter, however, is convenient
to look at the structure of cellular algebras as well as to check cellularity of an algebra.The
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difference between these two approachs is that in [4] the cellular property of an algebra is
shown by finding a suitable cellular basis, but in the other way we only construct a good
iterated inflation to the algebra. If Graham and Lerher’s method needs more knowlegde
in combinatorics area, then Koenig and Xi’s approach uses language of ring and module
theory.

In the later koenig and Xi showed that any cellular algebra can be exhibited as an
iterated inflation of copies of the ground ring R, and conversely, any iterated inflation of
cellular algebras is also cellular. Here, we represent briefly how an iterated inflation algebra
is formed.

Step 1. Inflating algebras along free R-modules
Let B be cellular R-algebra, V a finitely generated free R-module, and a bilinear form

¢p:V®rV — B, (2.1)

with values in B. An associative algebra (possibly without unit) A(B,V, ) is defined as
follows : as an R-module, A equals V ®r V' — B. The multiplication on A is defined on
basis elements:

(a®b®z) (c®d®y):=(a®d®zp(b,c)y.

If assume more that j is an involution of B and ¢ satisfies j(¢(v,w)) = ¢(w,v). Then
an involution ¢ on A is set up by putting

(a®b®z)=b®a® j(x).

This construction makes A into an associative R-algebra with an anti-automorphism ¢, and
such algebra A is called an inflation of B along V. The algebra A need not have a unit
element, but it may have idempotent elements.

Step 2. Inflating an algebra along another one

Let B be an algebra (possibly without unit) and C an algebra (with unit). This step
aims to define an extended algebra structure on A := B & C such that B becomes a two-
sided ideal and A/B isomorphic to C. Such construction requires conditions to make sure
that the multiplication is associative and the unit element of A is mapped to the unit of C'
by the quotient homomorphism. The paticular description of these conditions is outlined in
[5].

Now, let C' be any algebra (with unit) and let B be an algebra of the form VgV — B’
as step 1 of the construction. Let A := B ® C be as in step 2. We call A an inflation of C
along B. The result of iterated application of this construction is called an iterated inflation.
It is well-known that a cellular algebra may have different iterated inflations.

To show the main result we need the following lemma. This lemma is shown in [9] as a
condition to ensure that an algebra has cellular structure.

Lemma 2.1. /8], Lemma 3.3) Let A be a A — algebra with an involution i. Suppose there
18 a decomposition

A=, Vij)y®aVjy®@aB; (direct sum of A— modules)
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where V{;) is a free A —module of finite rank and Bj is a cellular A — algebra with respect
to an involution 0; and a cell chain Jf - Jg C Jgj = Bj for each j. Define J; =
@§:1V(j) @4 V() ®a Bj. Assume that the restriction of i on @3:1‘/@ ®a Vij) ®a Bj is given
byw@v®b— v@w®d;(b). If for each j there is a bilinear form ; : Vi) @4 V() — B,
such that 6;(p;(w,v)) = ¢j(v,w) for all w,v € V() and that the multiplication of two
elements in V(;) @4 V(;) ®a Bj is governed by ¢; modulo Jj_1; that is, for x,y,u,v € V),
and b,c € Bj, we have

(zRyeb)(udv®ce) =2 v bp;j(y,u)c

modulo the ideal Jj—1, and if Vijy ®a V() @4 Jlj + J;—1 is an ideal in A for alll and j, then
A is a cellular algebra.

2.2 Brauer algebras

In 1937 Brauer [1] introduced an algebra to play a role in Schur-Weyl duality when
replacing a general linear group GL("V) by its groups, a symplectic or an orthogonal group,
and in the other side the symmetric group is substituted by his algebra. The Brauer algebra
has a basis of diagrams, each a diagram consists of 2n dots arranged in two rows and n edges,
where each dot belongs to exactly one edge. The edges which connect two dots on the same
row are said horizontal edges. The other ones are called vertical edges. The multiplication
of two diagrams h; and hg is a concatenation in the following way: put diagram h; on top
of do such that all dots in the bottom row of h; are straight column with all upper dots of
ho. Now draw an edge from dot ¢ in the bottom row of hy to dot ¢ in top row of ho for all 4.
The resulting diagram, consists of parts that start and finish in top row of h; and bottom
row of ho respectively, as well as some cycles that use only dots in the middle two rows.
The product hj - ho is then defined to be this resulting diagram without internal cycles,
multiplied by z taken to the power of the number of internal cycles appeared above. Here
x is a variable. Denote D,,(x) to be the Brauer algebra consisting of 2n dots over a ground
ring. For more details about the Brauer algebra we refer reader to, for example, [1, 4-6].

It is mentioned in [1] that the Brauer algebra possess set of generators s;, 1 <i <n—1.
Let k be an integer, 0 < k < [n/2]. Define Jj to be the F-vector space with basis consisting
of all diagrams with at least 2k horizontal edges. That is, there are at least k edges in a row
of the diagram and each of them joins exactly two dots in the row. Then Ji is a two-sided
ideal of D, (N) and it implies a filtration of the Brauer algebra:

{0} € J[n/g] - J[n/2]—1 C... Jo=Dy(N).

where Jp, /9] = {0} or Jj,/9) # {0} depends on whether n is even or odd. The subquotient
Jk/ Jg+1 is isomorphic to an inflation V,,_ox @ p V;, — o @ p Xy, —of, of 3,9 along a vector space
Vp—ok as given in Lemma 5.3 [6]. As a consequence, Lemma yields that J/Ji11 is also
isomorphic to an inflation U} ® p Uy ® p Xog41,n- This realizes D,,(N) as an iterated inflation
of group algebras of symmetric groups, which can be stated similarly as in Theorem 5.6 [6].
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Length function for Brauer algebras

This section will be used in Section 3. Throughout, let F' be a field of any characteristic,
and fix x = N with N € F. For more details we refer the reader to [2], Section 2 (or [7],
Section 1.4).

Generalizing the length of elements in reflection groups, Wenzl [7| defined a length
function for a diagram of D,(N) as follows: Let k be an integer, 0 < k < [n/2]. For a
diagram d € D, (N) with exactly 2k horizontal edges, the definition of the length ¢(d) is
given by

£(d) = min{l(w) + L(we)| wiegywe =d, wy, w2 € By},

where e to be the following diagram:

e —o e —©0 [} [} [ ]
E(k) = . (2.2)

where each row has exactly k horizontal edges.

Recall for a permutation w € ¥,, an expression w = ;, S, - - - §4,, in which m is minimal
is called a reduced expression for w, and ¢(w) = m is called the length of a permutation w.
Notice that a permutation w3, can be seen as a diagram with no horizontal edge, and in
this case the length function in D,,(N) above restricts to this in 3,,.

A permutation w € X,, can be written uniquely in the form w = 1 ...%¢,_ot,_1, where
t; = 1or t; = 8ji; 1= SjSj—1"""Si; with 1 < ij <j<n.

Denote

%kﬂ’b = {w € En| w = toly ... log—2loklory1 ... tn72tn71}.

By the definition of ¢; given above, the number of possibilities of t; is j + 1. A direct
computation shows that By, ,, has n!/ 2k k! elements. In fact, the number of elements in DB
is equal to the number of diagrams d in D,,(N) in which d has exactly 2k horizontal edges
and its top row is fixed like that of e(y).

Given a diagram d which has exactly 2k horizontal edges and its top row is fixed like
that of (k) there exist different diagrams wi,we € X, such that d = E(k)W1 = €(k) W2 and
0(d) = L(w1) = £(ws). However, it is implicit in [7], Lemma 3.2 that there exists either w;
or wy in By .

Let us illustrate this by the following example.

In the Brauer algebra D7(N), d is the below diagram

e °e—oeo . . .
d= o
o_o—9o o . . .
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Then, d has two representations as follows:

e —© e —©O [ ] [ ] [ ]
@
e —© e —©O [ ] [ ] [ ]
d=
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
>/< ] [ ses
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
e —— O e —— 0 [ ] [ ] [ ]
] @
e —— O e —— 0 [ ] [ ] [ ]
d:
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
>\<\ || ] se2ss
[ ] [ ] o [ ] [ ] [ ] [ ]

It is obviously that d = e(y)s2s1 = e(9)s2s3 satisfying £(d*) = l(s2s1) = {(s253) = 2.
However, t3 = sgs1 is in ‘Ba 7 but tat3 = s953 is not.

Let 2} be a set of all diagrams d which such a diagram has the top row like that of the
diagram e(;) and no intersection between any two vertical edges. Similarly, let ;7 be a set
of all diagrams d* which are obtained by reflecting diagrams d € %, via a horizontal axis.

Denote

By, = {w € By | such that d € Dy, d = eyw, and £(d) = £(w)}

and
B = {w™| with w € By}

It is clear to check straightforward that
|B%| = |B}| = dimpF %, = dimpF2; =n!/2%(n — 2k)!k!. (2.3)
The following statement is another version of Lemma 4.1 in [2].

Lemma 2.2. The F-vector space F'%y has a basis {d := egyw with w € By}. Dually, the
F-vector space F 9 has a basis {d* := w™eq,y with w € By}

A reduced expression of a diagram

Let us recall briefly the concept "reduced expression” of a diagram introduced in [2].

Let h be an arbitrary diagram in D, (IN) with exactly 2k horizontal edges. It always
can be uniquely represented as concatenation of three partial diagrams d*, d and w, where
de Dy, d* € J, and w € Yop41,, analyzed in [2], Section 3.2. Then, by Lemma there
exist unique elements wy !, wy € By, such that d = e(w2 and d* = wieq,) with £(d) = £(ws)
and {(d) = f(wy). This means h is uniquely represented by the triple (w;,ws,w) with
0(h) = £(wy) + £(w) + £(ws), where w ,we € By, and w € Tog4 1. Such a triple (wi, w2, w)
is called a reduced expression of the diagram h.

In Example the diagram d has a reduced expression (1p,(ny, 5251, 15, ;). Another
expression of d is (1p,(n), 5283, 15 ;), but this does not fit into our above definition.
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3 An iterarted inflation for ¢-Brauer algebras

3.1 The g-Brauer algebras

The ¢-Brauer algebra is a deformation of the Brauer algebra, which is introduced by
Wenzl [7]. This algebra contains the Hecke algebra of symmetric group as a natural subal-
gebra. Let

[N] = 14+¢"+--+¢" " €lg,q7"],n e, and N € \{0}.

The ¢-Brauer algebra Br,(N) is defined over ring [¢, ¢~!] by generators g1, g2, g3, -, gn_1
and e and relations

(H) The elements g1, g2, g3, ..., gn—1 satisfy the relations of the Hecke algebra H,,(q). That
is: gigj = g;9i for |i — j| > 1, gigi+19i = gi+19igi+1 for 1 <i <n —2, and
g2 = (q—Dgi+qfor 1 <i<n-—1

(E2) eg; = gie for i > 2, eg1 = g1e = qe, egae = ¢Ve and egz_le =g le;

(F3) eg) = 929397 95 €(2) = €(2)92939; 95 *» where e(2) = (929397 "95 ')e-

The elements e in Br,(N) are defined inductively by e(;) = e and by
C(k+1) = 69Z2k+191_,2k€(k)- (3.1)

Let us briefly review some basic facts of the g-Brauer algebra shown in [2]. It possesses
an explicit basis {gp} labeled by diagrams h of the Brauer algebra. In particular, give a
diagram h with a reduced expression (w,ws,w), where fwl_l,wg € By and w € Yopt1n-
Then, the set

{9+ = Guw (k) guwu,| h is a diagram in D,,(N)} (3.2)

is a basis of the ¢-Brauer algebra. Define J; a [q, ¢ !]-module generated by elements gy,
where h are diagrams with at least 2k horizontal edges. This definition yields Jj is two-
sided ideal in Br,(N) and

[n/2]
Jr =Y Hu(q)e)Hn(q). (3.3)
ik

Hence,
{0} € Jpnyg) € Jpny2j-1 € - oo Jo = Bra(N)

is a chain of two-sided ideals. The involution i on Br, (V) is defined by the rule i(e) = e,
i(gw) = gy-1 for w € X, Tt is clearly that i is compatible with the usual involution of the
Hecke algebra.

The below properties of the g-Brauer algebra Br, (N) are collected from Lemma 3.4 [7]
and Corollary 3.15 [2]. These will be used in the following section.
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Lemma 3.1. Let k,l are integers, 0 < k,1 < [n/2]. Then

1. 6(k)6(l) = e(l)e(k) = [N}le(k) fO?“ k > l.
2. e(k)Hne(l) C H2k+1,n€(l) + ZleJrl Hne(m)Hn ifl > k.
3. e(k)Hne(l) C e(k)HZIJrl,n + Zm2k+1 Hne(m)Hn ifk > 1.

3.2 The construction of an iterated inflation

This section is devoted to give a construction for the main Theorem. We are going to
apply two steps in Section to set up an iterated inflation for the ¢g-Brauer algebra.

Throughout, let F' be an arbitrary field of any characteristic. Assume more that ¢, [V]
are invertible in F'.

1
For k an integer, 0 < k < [n/2], denote &) := We(k).

Define Uy to be a F-vector space spanned by the set

1
{ng | dis a diagram in P}

1
and let U} := R{ng*| d* is a diagram in 7} }.
Lemma 3.2. The F-module Uy, has a basis {gwé) | w € By}. Dually, the F-module Uy
has a basis {egy g, | w € Bi}. Moreover,

n!

Proof. For a diagram d € %, by Lemma and Definition (3.2) g4 is a basis element of
the g-Brauer algebra and is in the form g4 = e(;)g., where w € By. It is obviously that the
1

elements %gd (= Wgwe(k)) with w € B are independent. The proof is the same for
U;. Thus, we get the precise statement. O
Proposition 3.3. Fiz an index k and let B := Ji/Jx41 be the F-algebra (possibly without
identity). Then B is isomorphic (as F-algebra) to an inflation U} @p Uy @ Hopt1,0(q)
of the Hecke algebra of the symmetric group Hopi1,(q) along free F-modules Uy, U}:. The
F-bilinear form

¢ : Uy @F Ul — Hapi1,0(9)
1s determined by

D(E(k)Gvs Jul(k))E(k) = E(k)Jv * Gu€(r) mod Jpi1,

1

where u~,v are in By.
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Proof. Obviously, by it implies that B = Ji/Jp1 = Hn(q)(q)ewyHn(q)(q) as
F-vector spaces. Hence, dimpB = dimpH,(q)ex)Hn(q). Using Theorem 3.8(b) in [7],
dimpHy(q)eryHn(q) is equal to the number of all diagrams d which has exactly 2k hori-
zontal edges. By direct calculation we obtain

(n!)?
4 (n — 2k)1 (kD2

dimpHy(q)eyHn(q) = dimpB = dimpUy @p Uy @ Hapy1,0(q) =

By the basis in (3.2), B is a vector space with F-basis

{94 : = Gui€(k)gwgu,| d a diagram with exactly 2k horizontal edges in D, (N)

(w1, wa,w)is a reduced expression of the diagram d}.

Notice that B is an F- associative algebra (without identity) and the multiplication on B
is generated by that of the ¢g-Brauer algebra modulo with Jx,1.
Denote f;, : B — U} @ Uy ®p Hapt1,(q) to be a map determined by

Guw1 (k) Jwws = [N1F(Gun €1y © €1y Guor © o),
where (wy,w,ws) is a reduced expression of d.

This definition provides an isomorphism of F-modules. In order to show fj is an algebra
isomorphism, we need to define a multiplication on U} ®r Uy ®p Hop11,(q) using the
F-bilinear form ¢ as follows:

For ufl,ugl,vl,vg € By, and wi, w2 € Xog41,n, define

(gulé(k) @ (k) Gv; @ gw1)'(9uzé(k) @ €(k)Jvy @ Gwa ) (3.4)
1= Gur €(k) @ €(k)Jva @ G P(€(k) Gv1» Juz€(k)) e -
By Theorem 3.1 in [5] the multiplication makes U} @ p Uy ® p Hop41,,(q) into an associative

algebra (possibly without identity). It is left to verify that f is a ring isomorphism. To
this end, pick up two arbitrary basis elements g4,,94, € B up and assume that g; =

Gu1€(k)9w19v1 s Gdy = Guz€(k)JwsGuz - Then, we obtain
9dy * 9dp, mod  Jy 1 = (gule(k 9o G ) Guz€(k) GuwGvy) mod  Jy1q (3.5)
B

P
(Gus € (k) Gior ) (D(E(1) Gur  Gua (k) )€ (k) ) (€ (k) G G )
1) (

2
IE

(

(Gur (k) Jeon ) (E(k) Jv1 Jus € (k) ) (€(k) Jua Gp) MO Jp 41
(
)

Gu1 €(k)Guwr (¢ ( k)9v1 s Gu2€(k )))(e(k)nggm)
= (Gur €(k)) (Gr P(E(k) Gv1 » Gus€(k) ) Gewn ) (€(1) G )-

Since gu, #(€(k)Gvy s Jus(k))9ws € Hart1,n(q), it can be represented as an F-linear combina-
tion of basis elements gw With w € ¥opy1 . That is,

gw1¢(é(k)gvl ® quE(k))ng = Z AQwGw, (3.6)

WE k4 1,n

20



Vinh University Journal of Science, Vol. 50 - No. 24/2021, pp. 12-25

where a,, are coefficients in F. Putting this formula into the equation (3.5)), it yields

B3)
G Oy = (Guieg)( D Gwgw)(€(n)Gu,) (3.7)

WEXok+1,n

= D w(Gu € Iut ) Tu)-

WEX2k41,n

Hence,

(e}
fe(gny - Gny) &2 Tr( Z A (Guy € (1) Jw (k) Gu2))

WEX2k41,n

= Y awfe(Gui et 9w in)gv:)

WEXok11,n

1
: Z [N]kawfk(gule(k)gwgvg)

WEXok41,n

Z [N a (gu, (k) ® E(k)Jva @ Ju)-

WEXok4+1,n

&
I

=g

In other words, we also have

~

k

Te(gny) - fr(gn,) [N]k(gulé(k) ® €(k)Gv; @ Guor) - [N]k(guzé(k) ® €(k)Gvy @ Guon)

5
@

[N gu k) ® €1y Gvs @ G D(E (k) Grs » Jun €(k) ) G

[N}%(gulé(k)(@é(k)gvz@ Z AwGuw)

wez2k+1,n

= D INPFaw(guw ) ® € gu, ® gu)-

WEXok41,n

s
]

Hence, fi(9n, - 9ny) = fx(gny) - fu(gn,). Thus, fi is an algebra isomorphism. O
The next statement can be verified directly.

Lemma 3.4. Under fr the involution i : B — B corresponds to the involution on
Uy @r Ux @F Hapy1,0(q) which sends gu€(yy @ epygo ® guw 0 gy-1€(k) @ €y Gy—1 ® g1,
where v, v € By, and w € Yok+1m-

Recall that i is the involution in the g-Brauer algebra determined by i(e)) = e and
i(9w) = g, with w € 3,,.

We next show that the layers fit together (which is more than just having a filtration
by two-sided ideals).

For k,l non-negative integers, 0 < k,l < [n/2], let v € U} @p U, ®g Hart1,,(q) and
y € U ®r U; ®r Haiy1,0(q). Define

z-y = fi(fi (@) 7 (y) mod Jyia),
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where f;, 0 < j < [n/2], is the isomorphism defined in Proposition[3.3] Note that the prod-
uct in the right hand-side of definition is the usual multiplication in the ¢-Brauer algebra.
When k = [, the definition above recovers Definition . This claim is a consequence of
the following lemma.

Lemma 3.5. For k,l non-negative integers, 0 < k,l < [n/2], let gn, = Gu,€(k)Gur Guy N
Ji \ Jk+1 and gp, = Gus €(1)Juwz vy N J \ Ji41 be two basis elements in the q-Brauer algebra,
and let their respective f-images be gu, €(xy @ €1y G, @ Guy aNd Guy €1y @ €(1)Guy @ G- Then
the product g, - gn, either is an element of Ji11 or is an element of Ji \ Ji11, and in the
latter case it corresponds under f to a scalar multiple of an element gy, () ® b® gu, ¢ where
b is an element in Uy, and c is an element in Hapi10(q)

Proof. We separately consider two cases of [ and k.
Case 1. If | > k, then Lemma [3.12) implies that

e(k)Jvr * Gus G €(l) € Harr1,n(q)eq) + Z Hyem)Hn,
m>1+1

and hence

(gme(k)gungm) ’ (guze(l)nggvz) = Gu1 9w (e(k)gm : guznge(l))gvz

€ gu1gw1H2k+1,n(Q)e(l)gU2 + Z Hne(m)Hn
m>1+1
C HypeqHy + Z Hyem)Hnp
m>1+1

(??) 1>k
= HpemyHy =" J; C Jipr.

m>1

Thus, gn, - gh, =0 (mod Ji11), that is, gn, - gh, € Ji-
Case 2. If | < k, then by Lemma [3.1)2), we obtain

e(k) v * Jua€(1) € e(yHaut1n + Z Hyem)Hy.
m>k+1

Hence,
€(k)Gv1 " Gua €(1)Ywz Guva € e(k)H2l+1,ngvg + Z Hne(m)Hn
m>k+1

Since vz € By, using a dual statement of Lemma 4.10 [2] the product e(x)gu, - gu, Gus€(1)Gv CAD
be rewritten as an F-linear combination of elements of the form €(k) Yws Jvs where v3 € By
and w3 € Yop41,,. This means

€(k) Gv1 Jus Juon €(1) Jvg = Z A (w3,03) € (k) Jws Jvs + Qs (3.8)

w3€X2k+1,n
v3€%k
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where @y, 4,) are coefficients in I and a is an F-linear combination in Jg1.
Now, the product of g, and gp, is computed as follows.
Ihy * Ghy = (Gus (k) Gor Gor ) (Guz €(1) G2 G2 ) (3.9)

= Gu1 9w (e(k)g’u1 ’ guznge(l)gvg)

(3.8)
= Gu1 9wy ( Z O(wg,v3) € (k) Jws Jvs T a)

w3€Xok11,n
v3EB

= Z A(w3,v3)Ju1 Gw1 €(k) Gws Jvs + Guy Yo @

w3€EXok41,n
v3EB

with gy, 9w, a € Ji+1. By Definition we obtain

(gu1 é(k)®é(k)gvl ® gw1) ’ (guz 7( 1) ® é(l)gvz ® gw2)
= Jk (fk (gm ) @ €(k)Gv, @ Gr) - I (gUQ €1y @ €(1)Guvy @ ) mod Jk+l)
= fi(9n, * 9no mod Jr+1)
3.9
! fk( Z a(w3,113)gu1gw1gw3€(k)g’v3)

wW3€EX2k4+1,n
v3EB

f _ _
LT N (gun ) @ B Tus © Oy ) Jun Gvs)

w3EXok+1,n
’Uge%k

= Juy é(k) ®b® 9w, C,

o > — k
where b := Zw3€22k+1,n €(k)Yvs and c:= Zw3€z2k+1,n [N] A(ws,v3)Jws - -
'U3€‘Bk U3€‘Bk

If k£ = then Definition recovers Definition (3.4).

Proof. Keep notations as in the last lemma. For k = [ we get

(Gur €(k) RE(k)Gv1 ® Gun) * (Guz€(k) @ €(k)Gvz @ Guon) (3.10)
= Jr (fk (9u1 €(k) © €(k)Ju: ® Gun) * S (gug e() @ €(k)Jvs ® gu,) mod Jk+1)
= [f1(gny - gny mod Jp11).

For k =, the definition of the bilinear form ¢ yields

5 N 9
B(E(k) 9ur © Gus€(k))e(k) = NP e(ryGur Guseqry mod Ty (3.11)
Hence,
Ghy - Ghs mod Jk+1 = (gule(k)gwlgvl) . (gu2€(k))gw291)2 mod Jk+1 (3]_2)
= Gu1 Yur (€(1)Go1 * Guz€(k) G Gvn) MO 11
B-11)

= Gui 9w ([N]_2k¢(é(k)gv1 ® Gus é(k))é(k))nggvz'
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Now substituting (3.12) into Formula (3.10)) yields

(gu1 €(k) ® €(k)Gv; @ gw1) : (gu2é(k) @ €(k)Gvy @ gw2) =
= f1(9ur gun (IN]" 2 $(E(3) 901 @ Guz(k))E(1) ) Geo G

L [N (gur €1y ® €1y Guz) @ Geon B(E(k) Tor ® Gus€(k)) oo -

Altogether we have proved the following theorem.

Theorem 3.6. The q-Brauer algebra Br,(N) is an iterated inflation of the Hecke algebras
of symmetric groups. More precisely: as a free F- module, Br,(N) is equal to

H,(q)® (U ®r U1 @r H3,,(q)) ® (Us ®p U2 @p Hs,(q)) & .. .,

and the iterated inflation starts with Hy(q), inflates it along Uy ®@p Uy ®@p Hs,(q) and so

on, and ends with an inflation of F = H,11,(q) or F' = Hy, »(q) as bottom layer, depending
on whether n is even or odd.

Suppose that A is a commutative noetherian ring which contains R as a subring with
the same identity. If ¢, r and [N] are invertible in A, then the g-Brauer algebra Br,(N) over
the ring A is cellular with respect to the involution i. The proof of this Corollary comes
from Lemma 2.1l and Theorem
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TOM TAT
MOT DAY NANG LAP CHO CAC DAI SO Q-BRAUER

Nguyén Tién Diing, Pinh Dic Tai
Truong Pai hoc Vinh
Ngay nhan bai 04/5/2021, ngay nhan dang 18/6/2021

Trong bai bdo nay, ap dung ki thuat ctia Koenig va Xi trong tai lieu [5] ching toi xay
dyng mot diy nang lip cho céc dai s6 g-Brauer. Day nang lap nay sau dé duge st dung dé
chi ra ring, dai s6 g-Brauer c6 cau tric Cellula.

T khoa: Dai s6 g-Brauer; Dai s6 ¢6 diay nang lip; Dai s6 Cellula.
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