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1 Introduction

In 2012 a new algebra, called the q-Brauer algebra, was introduced by Wenzl [7] for
works relating to the representation theory and C∗-algebra. Since q-Brauer algebra is a q-
deformation of the classical Brauer algebra and contains the Hecke algebra of the symmetric
group as a subalgebra, it is natural to ask whether this algebra is cellularly or not.

Cellular algebras have been stated by Graham and Lerher in [4]. In their construction
an algebra is shown to possess cellular property if we can find a suitable cellular basis of this
algebra. After that, using Graham and Lerher’ approach, a large class of diagram algebras
has been proven to be cellular algebras, such as Brauer algebra, group algebra of symmetric
groups and its deformation, Iwahori Hecke algebra [4], Partition algebra [8], BMW -algebra
[9]. In the case of the q-Brauer algebra, we do not know if this one is a diagram algebra.
That is, it is unknown if there exists a basis represented by certain diagrams for the q-
Brauer algebra. Instead of applying the method above, we are going to use Koenig and
Xi’s construction in [5] to give a suitable iterated inflation for the q-Brauer algebra. This
iterated inflation enable us show the celluar structure for the q-Brauer algebra.

The article is organized as follows: In Section 2 we briefly review about the cellular
algebras following [4, 5], and necessary facts on the classical Brauer algebra following [2]
and [7]. Section 3 is used to construct an iterated inflation to the q-Brauer algebra.

2 Preliminaries

In this section we recall the original definition of cellular algebras in the sense of Graham
and Lehrer in [4] and an equivalent definition given in [5] by Koenig and Xi.

2.1 Cellular algebras

(Graham and Lehrer [4]) Let R be a commutative Noetherian integral domain with
identity. A cellular algebra over R is an associative (unital) algebra A together with cell
datum (Λ,M,C, i), where
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(C1) Λ is a partially ordered set (poset) and for each λ ∈ Λ, M(λ) is a finite set such
that the algebra A has an R-basis CλS,T , where (S, T ) runs through all elements of
M(λ)×M(λ) for all λ ∈ Λ.

(C2) Let λ ∈ Λ and S, T ∈M(λ). Then i is an involution of A such that i(CλS,T ) = CλT,S .

(C3) For each λ ∈ Λ and S, T ∈M(λ) then for any element a ∈ A we have

aCλS,T ≡
∑

U∈M(λ)

ra(U, S)CλU,T (mod A(< λ)),

where ra(U, S) ∈ R is independent of T, and A(< λ) is the R-submodule of A gener-
ated by {Cµ

S′ ,T ′
|µ < λ; S

′
, T
′ ∈M(µ)}.

The basis {CλS,T } of a cellular algebra A is called a cell basis. In [4], Graham and Lehrer
defined a bilinear form φλ for each λ ∈ Λ with respect to this basis as follfows.

CλS,TC
λ
U,V ≡ φλ(T,U)CλS,V (mod A < λ).

When R is a field, they also proved that the isomorphism classes of simple modules are
parametrized by the set

Λ0 = {λ ∈ Λ| φλ 6= 0}.

The following is an equivalent definition of cellular algebra.
(Koenig and Xi [5]) Let A be an R-algebra where R is a commutative noetherian

integral domain. Assume there is an involution i on A. A two-sided ideal J in A is called
cell ideal if and only ifi(J) = J and there exists a left ideal ∆ ⊂ J such that ∆ is finitely
generated and free over R and such that there is an isomorphism of A-bimodules α : J '
∆⊗R i(∆) (where i(∆) ⊂ J is the i-image of ∆) making the following diagram commutative:

J
α//

i

��

∆⊗R i(∆)

x⊗y 7→i(y)⊗i(x)

��

J
α// ∆⊗R i(∆)

The algebra A with the involution i is called cellular ifandonlyif there is an R-module
decomposition A = J

′
1 ⊕ J

′
2 ⊕ ...J

′
n (for some n) with i(J

′
j) = J

′
j for each j and such that

setting Jj = ⊕jl=1J
′
l gives a chain of two-sided ideals of A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ ... ⊂ Jn = A

(each of them fixed by i) and for each j (j = 1, ..., n) the quotient J
′
j = Jj/Jj−1 is a cell

ideal (with respect to the involution induced by i on the quotient) of A/Jj−1.
Recall that an involution i is defined as an R-linear anti-automorphism of A with i2 = id.

The ∆
′
s obtained from each section Jj/Jj−1 are called cell modules of the cellular algebra

A. Note that all simple modules are obtained from cell modules [4].
In [5], Koenig and Xi proved that the two definitions of cellular algebra are equivalent.

The first definition can be used to check concrete examples, the latter, however, is convenient
to look at the structure of cellular algebras as well as to check cellularity of an algebra.The
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difference between these two approachs is that in [4] the cellular property of an algebra is
shown by finding a suitable cellular basis, but in the other way we only construct a good
iterated inflation to the algebra. If Graham and Lerher’s method needs more knowlegde
in combinatorics area, then Koenig and Xi’s approach uses language of ring and module
theory.

In the later koenig and Xi showed that any cellular algebra can be exhibited as an
iterated inflation of copies of the ground ring R, and conversely, any iterated inflation of
cellular algebras is also cellular. Here, we represent briefly how an iterated inflation algebra
is formed.
Step 1. Inflating algebras along free R-modules
Let B be cellular R-algebra, V a finitely generated free R-module, and a bilinear form

ϕ : V ⊗R V −→ B, (2.1)

with values in B. An associative algebra (possibly without unit) A(B, V, ϕ) is defined as
follows : as an R-module, A equals V ⊗R V −→ B. The multiplication on A is defined on
basis elements:

(a⊗ b⊗ x) · (c⊗ d⊗ y) := (a⊗ d⊗ xϕ(b, c)y.

If assume more that j is an involution of B and ϕ satisfies j(ϕ(v, w)) = ϕ(w, v). Then
an involution i on A is set up by putting

i(a⊗ b⊗ x) = b⊗ a⊗ j(x).

This construction makes A into an associative R-algebra with an anti-automorphism i, and
such algebra A is called an inflation of B along V . The algebra A need not have a unit
element, but it may have idempotent elements.

Step 2. Inflating an algebra along another one
Let B be an algebra (possibly without unit) and C an algebra (with unit). This step

aims to define an extended algebra structure on A := B ⊕ C such that B becomes a two-
sided ideal and A/B isomorphic to C. Such construction requires conditions to make sure
that the multiplication is associative and the unit element of A is mapped to the unit of C
by the quotient homomorphism. The paticular description of these conditions is outlined in
[5].

Now, let C be any algebra (with unit) and let B be an algebra of the form V ⊗RV −→ B′

as step 1 of the construction. Let A := B ⊕ C be as in step 2. We call A an inflation of C
along B. The result of iterated application of this construction is called an iterated inflation.
It is well-known that a cellular algebra may have different iterated inflations.

To show the main result we need the following lemma. This lemma is shown in [9] as a
condition to ensure that an algebra has cellular structure.

Lemma 2.1. [8], Lemma 3.3) Let A be a Λ− algebra with an involution i. Suppose there
is a decomposition

A = ⊕mj=1V(j) ⊗Λ V(j) ⊗Λ Bj (direct sum of Λ−modules)
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where V(j) is a free Λ−module of finite rank and Bj is a cellular Λ− algebra with respect
to an involution δj and a cell chain J j1 ⊂ J j2 ... ⊂ J jsj = Bj for each j. Define Jt =
⊕tj=1V(j)⊗Λ V(j)⊗ΛBj. Assume that the restriction of i on ⊕tj=1V(j)⊗Λ V(j)⊗ΛBj is given
by w⊗ v⊗ b −→ v⊗w⊗ δj(b). If for each j there is a bilinear form ϕj : V(j)⊗Λ V(j) −→ Bj
such that δj(ϕj(w, v)) = ϕj(v, w) for all w, v ∈ V(j) and that the multiplication of two
elements in V(j) ⊗Λ V(j) ⊗Λ Bj is governed by φj modulo Jj−1; that is, for x, y, u, v ∈ V(j),
and b, c ∈ Bj, we have

(x⊗ y ⊗ b)(u⊗ v ⊗ c) = x⊗ v ⊗ bϕj(y, u)c

modulo the ideal Jj−1, and if V(j)⊗Λ V(j)⊗Λ J
j
l + Jj−1 is an ideal in A for all l and j, then

A is a cellular algebra.

2.2 Brauer algebras

In 1937 Brauer [1] introduced an algebra to play a role in Schur-Weyl duality when
replacing a general linear group GL(N ) by its groups, a symplectic or an orthogonal group,
and in the other side the symmetric group is substituted by his algebra. The Brauer algebra
has a basis of diagrams, each a diagram consists of 2n dots arranged in two rows and n edges,
where each dot belongs to exactly one edge. The edges which connect two dots on the same
row are said horizontal edges. The other ones are called vertical edges. The multiplication
of two diagrams h1 and h2 is a concatenation in the following way: put diagram h1 on top
of d2 such that all dots in the bottom row of h1 are straight column with all upper dots of
h2. Now draw an edge from dot i in the bottom row of h1 to dot i in top row of h2 for all i.
The resulting diagram, consists of parts that start and finish in top row of h1 and bottom
row of h2 respectively, as well as some cycles that use only dots in the middle two rows.
The product h1 · h2 is then defined to be this resulting diagram without internal cycles,
multiplied by x taken to the power of the number of internal cycles appeared above. Here
x is a variable. Denote Dn(x) to be the Brauer algebra consisting of 2n dots over a ground
ring. For more details about the Brauer algebra we refer reader to, for example, [1, 4-6].

It is mentioned in [1] that the Brauer algebra possess set of generators si, 1 ≤ i ≤ n−1.
Let k be an integer, 0 ≤ k ≤ [n/2]. Define Jk to be the F -vector space with basis consisting
of all diagrams with at least 2k horizontal edges. That is, there are at least k edges in a row
of the diagram and each of them joins exactly two dots in the row. Then Jk is a two-sided
ideal of Dn(N) and it implies a filtration of the Brauer algebra:

{0} ( J[n/2] ⊆ J[n/2]−1 ⊆ . . . J0 = Dn(N).

where J[n/2] = {0} or J[n/2] 6= {0} depends on whether n is even or odd. The subquotient
Jk/Jk+1 is isomorphic to an inflation Vn−2k⊗F Vn−2k⊗F Σn−2k of Σn−2k along a vector space
Vn−2k as given in Lemma 5.3 [6]. As a consequence, Lemma 2.1 yields that Jk/Jk+1 is also
isomorphic to an inflation Ū∗k⊗F Ūk⊗F Σ2k+1,n. This realizes Dn(N) as an iterated inflation
of group algebras of symmetric groups, which can be stated similarly as in Theorem 5.6 [6].
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Length function for Brauer algebras

This section will be used in Section 3. Throughout, let F be a field of any characteristic,
and fix x = N with N ∈ F . For more details we refer the reader to [2], Section 2 (or [7],
Section 1.4).

Generalizing the length of elements in reflection groups, Wenzl [7] defined a length
function for a diagram of Dn(N) as follows: Let k be an integer, 0 ≤ k ≤ [n/2]. For a
diagram d ∈ Dn(N) with exactly 2k horizontal edges, the definition of the length `(d) is
given by

`(d) = min{`(w1) + `(w2)| w1e(k)w2 = d, w1, w2 ∈ Σn},

where e(k) to be the following diagram:

• • . . . • • • • . . . •

•
e(k) =

• . . . • • • • . . . •
(2.2)

where each row has exactly k horizontal edges.
Recall for a permutation w ∈ Σn an expression w = si1si2 · · · sim in which m is minimal

is called a reduced expression for w, and `(w) = m is called the length of a permutation w.
Notice that a permutation wΣn can be seen as a diagram with no horizontal edge, and in
this case the length function in Dn(N) above restricts to this in Σn.

A permutation w ∈ Σn can be written uniquely in the form w = t1 . . . tn−2tn−1, where
tj = 1 or tj = sj,ij := sjsj−1 · · · sij with 1 ≤ ij ≤ j < n.

Denote

Bk,n = {w ∈ Σn| w = t2t4 . . . t2k−2t2kt2k+1 . . . tn−2tn−1}.

By the definition of tj given above, the number of possibilities of tj is j + 1. A direct
computation shows that Bk,n has n!/2kk! elements. In fact, the number of elements in Bk,n

is equal to the number of diagrams d in Dn(N) in which d has exactly 2k horizontal edges
and its top row is fixed like that of e(k).

Given a diagram d which has exactly 2k horizontal edges and its top row is fixed like
that of e(k), there exist different diagrams w1, w2 ∈ Σn such that d = e(k)w1 = e(k)w2 and
`(d) = `(w1) = `(w2). However, it is implicit in [7], Lemma 3.2 that there exists either w1

or w2 in Bk,n.
Let us illustrate this by the following example.
In the Brauer algebra D7(N), d is the below diagram

• • • • • • •

•
d =

• • • • • •
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Then, d has two representations as follows:

• • • • • • •
e(2)

• • • • • • •

•
d =

• • • • • •
s2s1

• • • • • • •
• • • • • • •

e(2)

• • • • • • •

•
d =

• • • • • •
s2s3

• • • • • • •
It is obviously that d = e(2)s2s1 = e(2)s2s3 satisfying `(d∗) = `(s2s1) = `(s2s3) = 2.
However, t2 = s2s1 is in B2,7 but t2t3 = s2s3 is not.

Let Dk be a set of all diagrams d which such a diagram has the top row like that of the
diagram e(k) and no intersection between any two vertical edges. Similarly, let D∗k be a set
of all diagrams d∗ which are obtained by reflecting diagrams d ∈ Dk via a horizontal axis.
Denote

Bk = {w ∈ Bk,n| such that d ∈ Dk, d = e(k)w, and `(d) = `(w)}
and

B∗k = {w−1| with w ∈ Bk}.
It is clear to check straightforward that

|Bk| = |B∗k| = dimFFDk = dimFFD∗k = n!/2k(n− 2k)!k!. (2.3)

The following statement is another version of Lemma 4.1 in [2].

Lemma 2.2. The F -vector space FDk has a basis {d := e(k)w with w ∈ Bk}. Dually, the
F -vector space FD∗k has a basis {d∗ := w−1e(k) with w ∈ Bk}.

A reduced expression of a diagram

Let us recall briefly the concept "reduced expression" of a diagram introduced in [2].
Let h be an arbitrary diagram in Dn(N) with exactly 2k horizontal edges. It always

can be uniquely represented as concatenation of three partial diagrams d∗, d and ω, where
d ∈ Dk, d∗ ∈ D∗k , and ω ∈ Σ2k+1,n analyzed in [2], Section 3.2. Then, by Lemma 2.2 there
exist unique elements w−1

1 , w2 ∈ Bk such that d = e(k)w2 and d∗ = w1e(k) with `(d) = `(w2)
and `(d) = `(w1). This means h is uniquely represented by the triple (w1, w2, ω) with
`(h) = `(w1) + `(ω) + `(w2), where w−1

1 , w2 ∈ Bk and ω ∈ Σ2k+1,n. Such a triple (w1, w2, ω)
is called a reduced expression of the diagram h.

In Example 2.2, the diagram d has a reduced expression (1D7(N), s2s1,1Σ5,7). Another
expression of d is (1D7(N), s2s3,1Σ5,5), but this does not fit into our above definition.
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3 An iterarted inflation for q-Brauer algebras

3.1 The q-Brauer algebras

The q-Brauer algebra is a deformation of the Brauer algebra, which is introduced by
Wenzl [7]. This algebra contains the Hecke algebra of symmetric group as a natural subal-
gebra. Let

[N ] = 1 + q1 + · · ·+ qN−1 ∈ [q, q−1], n ∈, and N ∈ \{0}.

The q-Brauer algebra Brn(N) is defined over ring [q, q−1] by generators g1, g2, g3, ..., gn−1

and e and relations

(H) The elements g1, g2, g3, ..., gn−1 satisfy the relations of the Hecke algebra Hn(q). That
is: gigj = gjgi for |i− j| > 1, gigi+1gi = gi+1gigi+1 for 1 ≤ i ≤ n− 2, and
g2
i = (q − 1)gi + q for 1 ≤ i ≤ n− 1;

(E1) e2 = [N ]e;

(E2) egi = gie for i > 2, eg1 = g1e = qe, eg2e = qNe and eg−1
2 e = q−1e;

(E3) e(2) = g2g3g
−1
1 g−1

2 e(2) = e(2)g2g3g
−1
1 g−1

2 , where e(2) = e(g2g3g
−1
1 g−1

2 )e.

The elements e(k) in Brn(N) are defined inductively by e(1) = e and by

e(k+1) = eg+
2,2k+1g

−
1,2ke(k). (3.1)

Let us briefly review some basic facts of the q-Brauer algebra shown in [2]. It possesses
an explicit basis {gh} labeled by diagrams h of the Brauer algebra. In particular, give a
diagram h with a reduced expression (w1, w2, ω), where w−1

1 , w2 ∈ Bk and ω ∈ Σ2k+1,n.
Then, the set

{gh : = gw1e(k)gωgw2 | h is a diagram in Dn(N)} (3.2)

is a basis of the q-Brauer algebra. Define Jk a [q, q−1]-module generated by elements gh
where h are diagrams with at least 2k horizontal edges. This definition yields Jk is two-
sided ideal in Brn(N) and

Jk =

[n/2]∑
j=k

Hn(q)e(j)Hn(q). (3.3)

Hence,
{0} ( J[n/2] ⊆ J[n/2]−1 ⊆ . . . J0 = Brn(N)

is a chain of two-sided ideals. The involution i on Brn(N) is defined by the rule i(e) = e,
i(gw) = gw−1 for w ∈ Σn. It is clearly that i is compatible with the usual involution of the
Hecke algebra.

The below properties of the q-Brauer algebra Brn(N) are collected from Lemma 3.4 [7]
and Corollary 3.15 [2]. These will be used in the following section.
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Lemma 3.1. Let k, l are integers, 0 ≤ k, l ≤ [n/2]. Then

1. e(k)e(l) = e(l)e(k) = [N ]le(k) for k ≥ l.

2. e(k)Hne(l) ⊂ H2k+1,ne(l) +
∑

m≥l+1Hne(m)Hn if l ≥ k.

3. e(k)Hne(l) ⊂ e(k)H2l+1,n +
∑

m≥k+1Hne(m)Hn if k ≥ l.

3.2 The construction of an iterated inflation

This section is devoted to give a construction for the main Theorem. We are going to
apply two steps in Section 2.1 to set up an iterated inflation for the q-Brauer algebra.

Throughout, let F be an arbitrary field of any characteristic. Assume more that q, [N ]
are invertible in F .

For k an integer, 0 ≤ k ≤ [n/2], denote ē(k) :=
1

[N ]k
e(k).

Define Uk to be a F -vector space spanned by the set

{ 1

[N ]k
gd | d is a diagram in Dk}

and let U∗k := R{ 1

[N ]k
gd∗ | d∗ is a diagram in D∗k}.

Lemma 3.2. The F -module Uk has a basis {gω ē(k) | ω ∈ Bk}. Dually, the F -module U∗k
has a basis {ē(k)g

−1
ω | ω ∈ Bk}. Moreover,

dimFUk = dimFU
∗
k =

n!

2k(n− 2k)!k!
.

Proof. For a diagram d ∈ Dk, by Lemma 2.2 and Definition (3.2) gd is a basis element of
the q-Brauer algebra and is in the form gd = e(k)gω where ω ∈ Bk. It is obviously that the

elements
1

[N ]k
gd (=

1

[N ]k
gωe(k)) with ω ∈ Bk are independent. The proof is the same for

U∗k . Thus, we get the precise statement.

Proposition 3.3. Fix an index k and let B := Jk/Jk+1 be the F -algebra (possibly without
identity). Then B is isomorphic (as F -algebra) to an inflation U∗k ⊗F Uk ⊗F H2k+1,n(q)
of the Hecke algebra of the symmetric group H2k+1,n(q) along free F -modules Uk, U∗k . The
F -bilinear form

φ : Uk ⊗F U∗k −→ H2k+1,n(q)

is determined by

φ(ē(k)gv, guē(k))ē(k) := ē(k)gv · guē(k) mod Jk+1,

where u−1, v are in Bk.
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Proof. Obviously, by (3.3) it implies that B = Jk/Jk+1
∼= Hn(q)(q)e(k)Hn(q)(q) as

F -vector spaces. Hence, dimFB = dimFHn(q)e(k)Hn(q). Using Theorem 3.8(b) in [7],
dimFHn(q)e(k)Hn(q) is equal to the number of all diagrams d which has exactly 2k hori-
zontal edges. By direct calculation we obtain

dimFHn(q)e(k)Hn(q) = dimFB = dimFU
∗
k ⊗F Uk ⊗F H2k+1,n(q) =

(n!)2

4k(n− 2k)!(k!)2
.

By the basis in (3.2), B is a vector space with F -basis

{gd : = gw1e(k)gωgw2 | d a diagram with exactly 2k horizontal edges in Dn(N)

(w1, w2, ω)is a reduced expression of the diagram d}.

Notice that B is an F - associative algebra (without identity) and the multiplication on B
is generated by that of the q-Brauer algebra modulo with Jk+1.
Denote fk : B −→ U∗k ⊗F Uk ⊗F H2k+1,n(q) to be a map determined by

gw1e(k)gωgw2 7→ [N ]k(gw1 ē(k) ⊗ ē(k)gw2 ⊗ gω),

where (w1, ω, w2) is a reduced expression of d.
This definition provides an isomorphism of F -modules. In order to show fk is an algebra

isomorphism, we need to define a multiplication on U∗k ⊗F Uk ⊗F H2k+1,n(q) using the
F -bilinear form φ as follows:

For u−1
1 , u−1

2 , v1, v2 ∈ Bk and ω1, ω2 ∈ Σ2k+1,n, define

(gu1 ē(k) ⊗ ē(k)gv1 ⊗ gω1)·(gu2 ē(k) ⊗ ē(k)gv2 ⊗ gω2) (3.4)

:= gu1 ē(k) ⊗ ē(k)gv2 ⊗ gω1φ(ē(k)gv1 , gu2 ē(k))gω2 .

By Theorem 3.1 in [5] the multiplication makes U∗k ⊗F Uk⊗F H2k+1,n(q) into an associative
algebra (possibly without identity). It is left to verify that fk is a ring isomorphism. To
this end, pick up two arbitrary basis elements gd1 , gd2 ∈ B up and assume that gd1 =
gu1e(k)gω1gv1 , gd2 = gu2e(k)gω2gv2 . Then, we obtain

gd1 · gd2 mod Jk+1 ≡ (gu1e(k)gω1gv1)(gu2e(k)gω2gv2) mod Jk+1 (3.5)
L3.1(1)
≡ (gu1e(k)gω1)(ē(k)gv1gu2 ē(k))(e(k)gω2gv2) mod Jk+1

φ
= (gu1e(k)gω1)(φ(ē(k)gv1 , gu2 ē(k))ē(k))(e(k)gω2gv2)

L3.1(1)
= (gu1e(k)gω1)(φ(ē(k)gv1 , gu2 ē(k)))(e(k)gω2gv2)

= (gu1e(k))(gω1φ(ē(k)gv1 , gu2 ē(k))gω2)(e(k)gv2).

Since gω1φ(ē(k)gv1 , gu2 ē(k))gω2 ∈ H2k+1,n(q), it can be represented as an F -linear combina-
tion of basis elements gw with w ∈ Σ2k+1,n. That is,

gω1φ(ē(k)gv1 ⊗ gu2 ē(k))gω2 =
∑

w∈Σ2k+1,n

awgw, (3.6)
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where aw are coefficients in F . Putting this formula into the equation (3.5), it yields

gh1 · gh2
(3.6)
= (gu1e(k))(

∑
w∈Σ2k+1,n

awgw)(e(k)gv2) (3.7)

=
∑

w∈Σ2k+1,n

aw(gu1e(k)gwe(k)gv2).

Hence,

fk(gh1 · gh2)
(3.7)
= fk(

∑
w∈Σ2k+1,n

aw(gu1e(k)gwe(k)gv2))

=
∑

w∈Σ2k+1,n

awfk(gu1e(k)gwe(k)gv2)

L3.1(1)
=

∑
w∈Σ2k+1,n

[N ]kawfk(gu1e(k)gwgv2)

fk=
∑

w∈Σ2k+1,n

[N ]2kaw(gu1 ē(k) ⊗ ē(k)gv2 ⊗ gw).

In other words, we also have

fk(gh1) · fk(gh2)
fk= [N ]k(gu1 ē(k) ⊗ ē(k)gv1 ⊗ gω1) · [N ]k(gu2 ē(k) ⊗ ē(k)gv2 ⊗ gω2)

(3.4)
= [N ]2kgu1 ē(k) ⊗ ē(k)gv2 ⊗ gω1φ(ē(k)gv1 , gu2 ē(k))gω2

(3.6)
= [N ]2k(gu1 ē(k) ⊗ ē(k)gv2 ⊗

∑
w∈Σ2k+1,n

awgw)

=
∑

w∈Σ2k+1,n

[N ]2kaw(gu1 ē(k) ⊗ ē(k)gv2 ⊗ gw).

Hence, fk(gh1 · gh2) = fk(gh1) · fk(gh2). Thus, fk is an algebra isomorphism.

The next statement can be verified directly.

Lemma 3.4. Under fk the involution i : B → B corresponds to the involution on
U∗k ⊗F Uk ⊗F H2k+1,n(q) which sends guē(k) ⊗ ē(k)gv ⊗ gω to gv−1 ē(k) ⊗ ē(k)gu−1 ⊗ gω−1,
where u−1, v ∈ Bk and ω ∈ Σ2k+1,n.

Recall that i is the involution in the q-Brauer algebra determined by i(e(k)) = e(k) and
i(gω) = g−1

ω with ω ∈ Σn.
We next show that the layers fit together (which is more than just having a filtration

by two-sided ideals).
For k, l non-negative integers, 0 ≤ k, l ≤ [n/2], let x ∈ U∗k ⊗F Uk ⊗R H2k+1,n(q) and

y ∈ U∗l ⊗R Ul ⊗R H2l+1,n(q). Define

x · y := fk(f
−1
k (x) · f−1

l (y) mod Jk+1),
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where fj , 0 ≤ j ≤ [n/2], is the isomorphism defined in Proposition 3.3. Note that the prod-
uct in the right hand-side of definition is the usual multiplication in the q-Brauer algebra.
When k = l, the definition above recovers Definition (3.4). This claim is a consequence of
the following lemma.

Lemma 3.5. For k, l non-negative integers, 0 ≤ k, l ≤ [n/2], let gh1 := gu1e(k)gω1gv1 in
Jk \Jk+1 and gh2 := gu2e(l)gω2gv2 in Jl \Jl+1 be two basis elements in the q-Brauer algebra,
and let their respective f -images be gu1 ē(k) ⊗ ē(k)gv1 ⊗ gω1 and gu2 ē(l) ⊗ ē(l)gv2 ⊗ gω2. Then
the product gh1 · gh2 either is an element of Jk+1 or is an element of Jk \ Jk+1, and in the
latter case it corresponds under f to a scalar multiple of an element gu1 ē(k)⊗b⊗gω1c where
b is an element in Uk and c is an element in H2k+1,n(q)

Proof. We separately consider two cases of l and k.
Case 1. If l > k, then Lemma 3.1(2) implies that

e(k)gv1 · gu2gω2e(l) ∈ H2k+1,n(q)e(l) +
∑

m≥l+1

Hne(m)Hn,

and hence

(gu1e(k)gω1gv1) · (gu2e(l)gω2gv2) = gu1gω1(e(k)gv1 · gu2gω2e(l))gv2

∈ gu1gω1H2k+1,n(q)e(l)gv2 +
∑

m≥l+1

Hne(m)Hn

⊆ Hne(l)Hn +
∑

m≥l+1

Hne(m)Hn

=
∑
m≥l

Hne(m)Hn
(??)
= Jl

l>k
⊆ Jk+1.

Thus, gh1 · gh2 ≡ 0 (mod Jk+1), that is, gh1 · gh2 ∈ Jk.
Case 2. If l ≤ k, then by Lemma 3.1(2), we obtain

e(k)gv1 · gu2e(l) ∈ e(k)H2l+1,n +
∑

m≥k+1

Hne(m)Hn.

Hence,
e(k)gv1 · gu2e(l)gω2gv2 ∈ e(k)H2l+1,ngv2 +

∑
m≥k+1

Hne(m)Hn.

Since v2 ∈ Bl, using a dual statement of Lemma 4.10 [2] the product e(k)gv1 ·gu2gω2e(l)gv2 can
be rewritten as an F -linear combination of elements of the form e(k)gω3gv3 where v3 ∈ Bk

and ω3 ∈ Σ2k+1,n. This means

e(k)gv1gu2gω2e(l)gv2 =
∑

ω3∈Σ2k+1,n

v3∈Bk

a(ω3,v3)e(k)gω3gv3 + a, (3.8)
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where a(ω3,v3) are coefficients in F and a is an F -linear combination in Jk+1.
Now, the product of gh1 and gh2 is computed as follows.

gh1 · gh2 = (gu1e(k)gω1gv1)·(gu2e(l)gω2gv2) (3.9)

= gu1gω1(e(k)gv1 · gu2gω2e(l)gv2)

(3.8)
= gu1gω1

( ∑
ω3∈Σ2k+1,n

v3∈Bk

a(ω3,v3)e(k)gω3gv3 + a
)

=
∑

ω3∈Σ2k+1,n

v3∈Bk

a(ω3,v3)gu1gω1e(k)gω3gv3 + gu1gω1a,

with gu1gω1a ∈ Jk+1. By Definition 3.2 we obtain

(gu1 ē(k)⊗ē(k)gv1 ⊗ gω1) · (gu2 ē(l) ⊗ ē(l)gv2 ⊗ gω2)

= fk
(
f−1
k (gu1 ē(k) ⊗ ē(k)gv1 ⊗ gω1) · f−1

l (gu2 ē(l) ⊗ ē(l)gv2 ⊗ gω2) mod Jk+1

)
= fk(gh1 · gh2 mod Jk+1)

(3.9)
= fk

( ∑
ω3∈Σ2k+1,n

v3∈Bk

a(ω3,v3)gu1gω1gω3e(k)gv3
)

fk=
∑

ω3∈Σ2k+1,n

v3∈Bk

[N ]k(gu1 ē(k) ⊗ ē(k)gv3 ⊗ a(ω3,v3)gω1gω3)

= gu1 ē(k) ⊗ b⊗ gω1c,

where b :=
∑

ω3∈Σ2k+1,n

v3∈Bk

ē(k)gv3 and c :=
∑

ω3∈Σ2k+1,n

v3∈Bk

[N ]ka(ω3,v3)gω3 .

If k = l then Definition 3.2 recovers Definition (3.4).

Proof. Keep notations as in the last lemma. For k = l we get

(gu1 ē(k)⊗ē(k)gv1 ⊗ gω1) · (gu2 ē(k) ⊗ ē(k)gv2 ⊗ gω2) (3.10)

= fk
(
f−1
k (gu1 ē(k) ⊗ ē(k)gv1 ⊗ gω1) · f−1

k (gu2 ē(l) ⊗ ē(k)gv2 ⊗ gω2) mod Jk+1

)
= fk(gh1 · gh2 mod Jk+1).

For k = l, the definition of the bilinear form φ yields

φ(ē(k)gv1 ⊗ gu2 ē(k))ē(k)
φ
= [N ]2ke(k)gv1gu2e(k) mod Jk+1. (3.11)

Hence,

gh1 · gh2 mod Jk+1 ≡ (gu1e(k)gω1gv1) · (gu2e(k))gω2gv2 mod Jk+1 (3.12)

≡ gu1gω1(e(k)gv1 · gu2e(k)gω2gv2) modJk+1

(3.11)
= gu1gω1([N ]−2kφ(ē(k)gv1 ⊗ gu2 ē(k))ē(k))gω2gv2 .
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Now substituting (3.12) into Formula (3.10) yields

(gu1 ē(k) ⊗ ē(k)gv1 ⊗ gω1) · (gu2 ē(k) ⊗ ē(k)gv2 ⊗ gω2) =

= fk
(
gu1gω1([N ]−2kφ(ē(k)gv1 ⊗ gu2 ē(k))ē(k))gω2gv2

)
fk= [N ]−k(gu1 ē(k) ⊗ ē(k)gv2)⊗ gω1φ(ē(k)gv1 ⊗ gu2 ē(k))gω2 .

Altogether we have proved the following theorem.

Theorem 3.6. The q-Brauer algebra Brn(N) is an iterated inflation of the Hecke algebras
of symmetric groups. More precisely: as a free F - module, Brn(N) is equal to

Hn(q)⊕ (U∗1 ⊗F U1 ⊗F H3,n(q))⊕ (U∗2 ⊗F U2 ⊗F H5,n(q))⊕ . . . ,

and the iterated inflation starts with Hn(q), inflates it along U∗1 ⊗F U1 ⊗F H3,n(q) and so

on, and ends with an inflation of F = Hn+1,n(q) or F = Hn,n(q) as bottom layer, depending
on whether n is even or odd.

Suppose that Λ is a commutative noetherian ring which contains R as a subring with
the same identity. If q, r and [N ] are invertible in Λ, then the q-Brauer algebra Brn(N) over
the ring Λ is cellular with respect to the involution i. The proof of this Corollary comes
from Lemma 2.1 and Theorem 3.6.
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TÓM TẮT

MỘT DÃY NÂNG LẶP CHO CÁC ĐẠI SỐ Q-BRAUER

Nguyễn Tiến Dũng, Đinh Đức Tài
Trường Đại học Vinh

Ngày nhận bài 04/5/2021, ngày nhận đăng 18/6/2021

Trong bài báo này, áp dụng kĩ thuật của Koenig và Xi trong tài liệu [5] chúng tôi xây
dựng một dãy nâng lặp cho các đại số q-Brauer. Dãy nâng lặp này sau đó được sử dụng để
chỉ ra rằng, đại số q-Brauer có cấu trúc Cellula.

Từ khóa: Đại số q-Brauer; Đại số có dãy nâng lặp; Đại số Cellula.

25


	Introduction
	Preliminaries
	Cellular algebras
	Brauer algebras

	An iterarted inflation for q-Brauer algebras
	The q-Brauer algebras
	The construction of an iterated inflation


